Answer:
[Ca²⁺] = 1M
[NO₃⁻] = 2M
Explanation:
Calcium nitrate dissociates in water as follows:
Ca(NO₃)₂ ⇒ Ca²⁺ + 2NO₃⁻
The moles of Ca²⁺ can be found using the molar relationship between Ca(NO₃)₂ and Ca²⁺
(0.100mol Ca(NO₃)₂) (Ca²⁺ /Ca(NO₃)₂) = 0.100 mol Ca²⁺
The concentration of Ca²⁺ is then:
[Ca²⁺] = n/V = (0.100mol)/(100.0mL) x (1000ml)/(1L) = 1M
Similarly, moles of NO₃⁻ can be found using the molar relationship between Ca(NO₃)₂ and NO₃⁻:
(0.100mol Ca(NO₃)₂) (2NO₃⁻/Ca(NO₃)₂) = 0.200 mol NO₃⁻
The concentration of NO₃⁻ is then:
[NO₃⁻] = (0.200mol)/(100.0mL) x (1000ml)/(1L) = 2M
Answer: It becomes the uncombined element in the product.
Explanation:
The reaction between Zn and HCl is a single displacement reaction according to equation below
Zn + 2HCl —> ZnCl2 + H2
Zn displaces H2 from acid and in the product, hydrogen became the uncombined element.
Answer:
The correct answer is B. It is spontaneous only at low temperatures.
Explanation:
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure.
The spontaneity of a reaction is given by the equation:
ΔG = ΔH - TΔS
where:
ΔH: enthalpy variation
T: absolute temperature
ΔS: entropy variation
As the reaction is exothermic, ΔH<0
As the reaction order increases (the reagents are solid and gas and their product is solid), ΔS<0
Therefore, the reaction will be spontaneous when ΔG is negative.
ΔG = ΔH - TΔS
That is, the entropy term must be smaller than the enthalpy term.
Hence, the reaction will be spontaneous only at low temperatures.
Yes. Look up Newton’s laws of physics. That should help
Answer:
g
Explanation:
know what you think about th can get it