Answer: The person will still have a mass of 90kg on Mars
Explanation: The Truth is, the mass of a body remains constant from place to place. It is the weight which is equal to {mass of body * acceleration due to gravity{g}} that varies from place to place since it is dependent on {g}.
In this case the person will have a Weight of 90*9.8 = 882N on Earth.
{ "g" on Earth is 9.8m/s²}
And a Weight of 90*3.3 = 297N on Mars.
{ From the question "g" on Mars is {9.8m/s²}/3 which is 3.3m/s²}
From this analysis you notice that the WEIGHT of the person Varies but the MASS remained Constant at 90kg.
The image of the object is 8cm to the left of the lens (D)
<h3>
</h3>
What is the image of an object?
The image of an object is said to be the location where light rays from that object intersect with a mirror by reflection.
It is calculated thus:
1÷v = 1÷f - 1÷u
<h3>How to calculate the image of an object</h3>
From the formula
1÷v = 1÷f - 1÷u
<h3>
Where </h3>
V = image distance fromthe object
U = object
f = focal length
Substitute the values
1÷v = 1÷8 - 1÷ 4
1÷v = - 1÷8
Make v the subject of formula
v = -8cm
Therefore, the image of the object is 8cm to the left of the lens (D)
Learn more on focal length here:
brainly.com/question/25779311
#SPJ1
GPE=mgh
=25 x 10 x 3
=750J
Answer:
1960.32306 kg/s
Explanation:
m = Mass of water = 1 kg
g = Acceleration due to gravity = 9.81 m/s²
h = Height from which the water will fall
Potential Energy

One megawatts of power is required
So, flow rate

1960.32306 kg/s is required to produce a megawatt of power