Answer:
Explanation:
What is a free body diagram?
Answer: a force diagram is a graphical illustration used to visualize the applied forces and resulting reactions on a body in a given condition
Drawing a free-body diagram for this problem
Answer: Look at the attached picture, ask me any questions if you are still confused. It is a little messy since I didn't have my pen.
Find its weight on Earth
Answer: The weight is dependent on the mass of the object and the gravitational constant on the planet. The gravitational constant, in this case, is 9.8.
so the weight = mass * gravitational constant = m * g = 1000 * 9.8
= 9800 N
Hope that helps!
First, find the amount of time for the dart to hit the board using this equation: t = d/v
t = 2 m/ 15 m/s = 0.133 s
Then, find the height the dart has fallen from its initial point using this equation: h = 0.5gt²
h = 0.5(9.81 m/s²)(0.133 s)² = 0.0872 m or 8.72 cm
Since the diameter of the bull's eye is only 5 cm, and you started at the same level of the top of the bull's eye, that means the maximum allowance would only be 5 cm. Since it exceeded to 8.72 cm, it means that <em>Veronica will not hit the bull's eye.</em>
Answer:
<em>The total time is: t=451.22 sec</em>
<em>The average speed is: V=34.57 m/s</em>
Explanation:
<u>Average speed</u>
The average speed is calculated by dividing the total distance traveled by an object (x) by the total time it took it to travel that distance (t).

Since the student makes the trip in two parts, we have to calculate the total distance and the total time.
We know the distance to school is 7.8 Km = 7,800 m. The student makes his way home over the same distance, thus the total distance is
x=2*7,800 m=15,600 m
The first trip to school was done at an average speed of v1=32.6 m/s. Knowing the distance and speed, we can calculate the time:

The second trip back home was done at an average speed of v2=36.8 m/s. Let's calculate the second time:

The total time is:


The average speed is:


Answer: wavelength=velocity×period
Explanation:the relation between velocity, wavelength and period is
Wavelength=velocity×period