1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
2 years ago
15

I need help with this geometry assignment. Please help.

Mathematics
1 answer:
zvonat [6]2 years ago
6 0
SA = LH + LW + WH + 2(1/2LH)
SA = 4*2 + 5*2 + 3*2 + 2*1/2*4*3
SA = 8 + 10 + 6 + 12
SA = 36
You might be interested in
The area of circle 1 is 6 square units. The area of circle 2 is 7 square units. Which of the following is true about the circumf
miskamm [114]

Answer:

C. The circumference of circle 1 is less than the circumference of circle 2.

Step-by-step explanation:

6<7

We know that the formula for the area of a circle is πr². This means the greater the radius, the greater the area.

We also know that the formula for circumference is 2πr. It is also dependent on radius. The greater the radius, the greater the circumference.

Given that Circle 2 has a greater area, this means that it has a greater radius which in turn means that it has a greater circumference.

C. The circumference of circle 1 is less than the circumference of circle 2.

5 0
2 years ago
Read 2 more answers
Select the table that represents a linear function plz help
MaRussiya [10]

Answer: B.

Step-by-step explanation: It's the only table that shows a consistent slope. The equation would be  y=6x+6.

4 0
3 years ago
Read 2 more answers
Solve the equation in the interval [0,2π]. If there is more than one solution write them separated by commas.
Sedaia [141]
\large\begin{array}{l} \textsf{Solve the equation for x:}\\\\ &#10;\mathsf{(tan\,x)^2+2\,tan\,x-4.76=0}\\\\\\ \textsf{Substitute}\\\\ &#10;\mathsf{tan\,x=t\qquad(t\in \mathbb{R})}\\\\\\ \textsf{so the equation &#10;becomes}\\\\ \mathsf{t^2+2t-4.76=0}\quad\Rightarrow\quad\begin{cases} &#10;\mathsf{a=1}\\\mathsf{b=2}\\\mathsf{c=-4.76} \end{cases} &#10;\end{array}


\large\begin{array}{l} \textsf{Using &#10;the quadratic formula:}\\\\ \mathsf{\Delta=b^2-4ac}\\\\ &#10;\mathsf{\Delta=2^2-4\cdot 1\cdot (-4.76)}\\\\ &#10;\mathsf{\Delta=4+19.04}\\\\ \mathsf{\Delta=23.04}\\\\ &#10;\mathsf{\Delta=\dfrac{2\,304}{100}}\\\\ &#10;\mathsf{\Delta=\dfrac{\diagup\!\!\!\! 4\cdot 576}{\diagup\!\!\!\! 4\cdot&#10; 25}}\\\\ \mathsf{\Delta=\dfrac{24^2}{5^2}} \end{array}

\large\begin{array}{l}&#10; \mathsf{\Delta=\left(\dfrac{24}{5}\right)^{\!2}}\\\\ &#10;\mathsf{\Delta=(4.8)^2}\\\\\\ &#10;\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm\sqrt{(4.8)^2}}{2\cdot 1}}\\\\ &#10;\mathsf{t=\dfrac{-2\pm 4.8}{2}}\\\\ \mathsf{t=\dfrac{\diagup\!\!\!\! &#10;2\cdot (-1\pm 2.4)}{\diagup\!\!\!\! 2}}\\\\\mathsf{t=-1\pm 2.4} &#10;\end{array}

\large\begin{array}{l} \begin{array}{rcl} &#10;\mathsf{t=-1-2.4}&~\textsf{ or }~&\mathsf{t=-1+2.4}\\\\ &#10;\mathsf{t=-3.4}&~\textsf{ or }~&\mathsf{t=1.4} \end{array} &#10;\end{array}


\large\begin{array}{l} \textsf{Both &#10;are valid values for t. Substitute back for }\mathsf{t=tan\,x:}\\\\ &#10;\begin{array}{rcl} \mathsf{tan\,x=-3.4}&~\textsf{ or &#10;}~&\mathsf{tan\,x=1.4} \end{array}\\\\\\ \textsf{Take the inverse &#10;tangent function:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=tan^{-1}(-3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi}\\\\ &#10;\mathsf{x=-tan^{-1}(3.4)+k\cdot \pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+k\cdot \pi} \end{array}\\\\\\ &#10;\textsf{where k in an integer.} \end{array}

__________


\large\begin{array}{l}&#10; \textsf{Now, restrict x values to the interval &#10;}\mathsf{[0,\,2\pi]:}\\\\ \bullet~~\textsf{For }\mathsf{k=0:}\\\\ &#10;\begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=1:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+\pi} &#10;\end{array}}\textsf{ is in the 2}^{\mathsf{nd}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 1.86~rad~~(106.39^\circ)}\\\\\\ &#10;\boxed{\begin{array}{c}\mathsf{x=tan^{-1}(1.4)+\pi} \end{array}}\textsf{&#10; is in the 3}^{\mathsf{rd}}\textsf{ quadrant.}\\\\ \mathsf{x\approx &#10;4.09~rad~~(234.46^\circ)}\\\\\\ \end{array}


\large\begin{array}{l}&#10; \bullet~~\textsf{For }\mathsf{k=2:}\\\\ \begin{array}{rcl} &#10;\mathsf{x=-tan^{-1}(3.4)+2\pi}&~\textsf{ or &#10;}~&\mathsf{x=tan^{-1}(1.4)+2\pi>2\pi~~\textsf{(discard)}} &#10;\end{array}\\\\\\ \boxed{\begin{array}{c}\mathsf{x=-tan^{-1}(3.4)+2\pi} &#10;\end{array}}\textsf{ is in the 4}^{\mathsf{th}}\textsf{ quadrant.}\\\\ &#10;\mathsf{x\approx 5.00~rad~~(286.39^\circ)} \end{array}


\large\begin{array}{l}&#10; \textsf{Solution set:}\\\\ &#10;\mathsf{S=\left\{tan^{-1}(1.4);\,-tan^{-1}(3.4)+\pi;\,tan^{-1}(1.4)+\pi;\,-tan^{-1}(3.4)+2\pi\right\}}&#10; \end{array}


<span>If you're having problems understanding this answer, try seeing it through your browser: brainly.com/question/2071152</span>


\large\textsf{I hope it helps.}


Tags: <em>trigonometric trig quadratic equation tangent tan solve inverse symmetry parity odd function</em>

6 0
3 years ago
What’s (6n^2 - 4n + 6) +(n-2).!?
valentinak56 [21]
6n^-3n-2 i think , have a good day!!
3 0
3 years ago
Read 2 more answers
Why is the numerator greater than the denominator in a fraction that is equivalent to a percent greater than 100?
Anettt [7]
I don’t know I think someone else is gonna help u
4 0
3 years ago
Other questions:
  • I need help with this equation please
    5·1 answer
  • I need help! I have test tomorrow and I got sick so I couldn’t go to school and I’m lost
    10·1 answer
  • Can somebody please help me?
    11·1 answer
  • Estimate 44.87+42.712+43.5 using clustering<br><br>Plsss help
    9·1 answer
  • Please answer correctly !!!!!!!! Will mark brianliest !!!!!!!!!!!!!
    7·1 answer
  • P viuen
    7·1 answer
  • Can Someone please help<br><br>​
    8·1 answer
  • I need help No links or ill report you 8!√5+6²
    14·2 answers
  • Find 4 divided by 1/5 Simplify the answer and write as a whole number
    14·2 answers
  • A gym has 65 members. If 35 are men and the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!