Answer:
I think the answer is True
Ke = (1/2)mv²
m = 100kg, v = 10 km/s = 10*1000 = 10000m/s
Ke = (1/2)*100*10000
Ke = 500000 Joules
Answer:
a

b
The value is 
Explanation:
From the question we are told that
The mass is
The spring constant is 
The instantaneous speed is 
The position consider is x = 0.750A meters from equilibrium point
Generally from the law of energy conservation we have that
The kinetic energy induced by the hammer = The energy stored in the spring
So

Here a is the amplitude of the subsequent oscillations
=> 
=> 
=> 
Generally from the law of energy conservation we have that
The kinetic energy by the hammer = The energy stored in the spring at the point considered + The kinetic energy at the considered point

=> 
=> 
If "0.3 minute" is correct, then it's 9,543,272 Joules.
If it's supposed to say "0.3 SECOND", then the KE is 2,651 Joules.
Answer:
d)21.5 moles
Explanation:
Given that
L = 24 L
T = 27 °C = 300 K
P = 22 atm
We know that ideal gas equation
P V = n R T
P=Pressure ,V= Volume ,n=Moles ,R=Universal gas constant ,T=Temperature
Now by putting the values
22 x 24 = n x 0.08206 x 300
n= 21.447 moles
n= 21.5 moles
Therefore the number of moles will be 21.5 moles.
The answer is "d".