1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LekaFEV [45]
3 years ago
14

What would be an example of higher concentration for a liquid?

Physics
2 answers:
zmey [24]3 years ago
7 0

Answer:

its A

Explanation:

STatiana [176]3 years ago
4 0
I think a, im not a 100% sure tho!!!
You might be interested in
Infant car seats are made to face the rear of the car. This is safer in a front end collision because of Newton's First law. New
gavmur [86]

Answer:

Option D is the correct answer

Explanation:

3 0
3 years ago
The following table lists the work functions of a few common metals, measured in electron volts. Metal Φ(eV) Cesium 1.9 Potassiu
Citrus2011 [14]

A. Lithium

The equation for the photoelectric effect is:

E=\phi + K

where

E=\frac{hc}{\lambda} is the energy of the incident light, with h being the Planck constant, c being the speed of light, and \lambda being the wavelength

\phi is the work function of the metal (the minimum energy needed to extract one photoelectron from the surface of the metal)

K is the maximum kinetic energy of the photoelectron

In this problem, we have

\lambda=190 nm=1.9\cdot 10^{-7}m, so the energy of the incident light is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{1.9\cdot 10^{-7} m}=1.05\cdot 10^{-18}J

Converting in electronvolts,

E=\frac{1.05\cdot 10^{-18}J}{1.6\cdot 10^{-19} J/eV}=6.5 eV

Since the electrons are emitted from the surface with a maximum kinetic energy of

K = 4.0 eV

The work function of this metal is

\phi = E-K=6.5 eV-4.0 eV=2.5 eV

So, the metal is Lithium.

B. cesium, potassium, sodium

The wavelength of green light is

\lambda=510 nm=5.1\cdot 10^{-7} m

So its energy is

E=\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34}Js)(3\cdot 10^8 m/s)}{5.1\cdot 10^{-7} m}=3.9\cdot 10^{-19}J

Converting in electronvolts,

E=\frac{3.9\cdot 10^{-19}J}{1.6\cdot 10^{-19} J/eV}=2.4 eV

So, all the metals that have work function smaller than this value will be able to emit photoelectrons, so:

Cesium

Potassium

Sodium

C. 4.9 eV

In this case, we have

- Copper work function: \phi = 4.5 eV

- Maximum kinetic energy of the emitted electrons: K = 2.7 eV

So, the energy of the incident light is

E=\phi+K=4.5 eV+2.7 eV=7.2 eV

Then the copper is replaced with sodium, which has work function of

\phi = 2.3 eV

So, if the same light shine on sodium, then the maximum kinetic energy of the emitted electrons will be

K=E-\phi = 7.2 eV-2.3 eV=4.9 eV

7 0
4 years ago
Let A be the last two digits, and let B be the last three digits, and the C be the sum of the last 4 digits of your 8-digit stud
UNO [17]

Answer:

66.053m/s

Explanation:

A = 47

B = 347

C = 19

Train moves at

(23 + A)m/s

= 23 + 47 = 60m/s

At (250.0+B) seconds

250.0+347 =

547 seconds

Distance d,

= 70 x 597

= 41790

It also moves at

(45.0 + c)

= 45 + 19

= 64m/s

Time = 800 + B

= 800 + 347

= 1147

Distance,

= 64 x 1147

= 73408m

Total distance,

= 73408 + 41790

= 115,198

Total time,

= 597 + 1147

= 1744

Average speed,

= Total distance / total time

= 115198/1174

= 66.053m/s

7 0
3 years ago
I NEED HELP ASAP!!!!!
Ratling [72]

Answer:

D) momentum of cannon + momentum of projectile= 0

Explanation:

The law of conservation of momentum states that the total momentum of an isolated system is constant.

In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

p_i = p_f

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

p_i = 0

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

p_f = p_{cannon}+p_{projectile} =0

6 0
4 years ago
Which two quantities can be used to describe motion? A: Displacement and weight. B: speed and acceleration. C: speed and mass. D
HACTEHA [7]
The answer is B as all the other options contain quantities not related to describing motion
3 0
3 years ago
Other questions:
  • How many hour are required to make a 3000 km trip if your average speed is 50 km/h?
    5·1 answer
  • Gravitational force between two objects depends on: a. The weight of the objects c. The mass of each object b. The distance betw
    5·2 answers
  • How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 4.00
    14·1 answer
  • The refractive index of medium A is 1.54 and that of medium B is 2.12. Which statement is correct about this information?
    14·2 answers
  • s) A body of mass 2 kilograms moves on a circle of radius 3 meters, making one revolution every 5 seconds. Find the magnitude of
    12·1 answer
  • Guys this is urgent and I don’t know please help me I will mark brainliest!
    12·1 answer
  • QUESTION 1 The speed of sound in air is 340 m/s. What is the wavelength of a soundwave that has a frequency of 968 Hz?​
    14·1 answer
  • 1. a body of mass 40kg is given an acceleration of 10ms/2 on a horizontal ground for which the coefficient of friction 0.5, calc
    5·1 answer
  • 2) A ball is thrown straight up into the air and passes a window 3 seconds after being released. It passes the same
    12·1 answer
  • A 2 kg block moves along x axis . if acceleration as function of its ​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!