Answer:
The normal force the seat exerted on the driver is 125 N.
Explanation:
Given;
mass of the car, m = 2000 kg
speed of the car, u = 100 km/h = 27.78 m/s
radius of curvature of the hill, r = 100 m
mass of the driver, = 60 kg
The centripetal force of the driver at top of the hill is given as;

where;
Fc is the centripetal force
is downward force due to weight of the driver
is upward or normal force on the drive

Therefore, the normal force the seat exerted on the driver is 125 N.
Answer:
The electric field is 
Explanation:
Given that,
Radius = 0.357 m
Charge 
Point charge 
Distance = 0.815 m
We need to calculate the total electric field
Using formula of electric field

Where, q = point charge
r = distance
Put the value into the formula


Hence, The electric field is 
We can look at all the ages of the earth since it’s a big crack is reveals many layers of the earth and we can know about chemicals and metals that were in earth and diffrent times
-2/5 = 11k - k
-2/5 = 10k
-2/5/10 = k
-2/5 * 10 = k
-2/50 = k
k = -1/25.
-1/25 - 2/5 = 11k is true.
Answer:
The kinetic energy of the bullet is 5.4 × 10³ J
Explanation:
Hi there!
The equation of kinetic energy is the following:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the bullet.
v = speed of the bullet.
Let´s convert the mass unit to kg so that our result is in Joules:
64 g · ( 1 kg / 1000 g) = 0.064 kg
Then, the kinetic energy will be the following:
KE = 1/2 · 0.064 kg · (411 m/s)²
KE = 5.4 × 10³ J