There are some missing information in the question.
However, since you are talking about magnetic force, I think you refer to the Lorentz force. When a particle of charge q and velocity v is immersed in a magnetic field of intensity B, the force acting on the particle is:

where

is the angle between the magnetic field and the direction of the particle.
Therefore, if force F is doubled, then also the velocity v must be double of its initial value:
Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved

The spring constant of the net is 20130.76 N
From Hooke's Law

The net would strech 0.03167 m
If h = 35 m
From energy conservation

Solving the above equation we get

The compression of the net is 1.52 m
V = [4/3]π r^3 => [dV / dr ] = 4π r^2
[dV/dt] = [dV/dr] * [dr/dt]
[dV/dt] = [4π r^2] * [ dr/ dt]
r = 60 mm, [dr / dt] = 4 mm/s
[dV / dt ] = [4π(60mm)^2] * 4mm/s = 180,955.7 mm/s
The magnitude of work done by the gas is 279 J and the sign is negative so W = -279 J as work is done by the system.
<u>Explanation:</u>
According to first law of thermodynamics, the change in internal energy of the system is equal to the sum of the heat energy added or released from the system with the work done on or by the system. If the heat energy is added to the system to perform a certain work, then the heat energy is taken as positive, while it will be negative when the heat energy is released from the system.
Similarly, in this case, the heat energy of 597 J is added to the system. So the heat energy will be positive, while the gas expansion occurs means work is done by the system.
ΔU = Q+W
Since ΔU is the change in internal energy which is given as 318 J and the heat energy added to the system is Q = 597 J.
Then the work done by the gas = ΔU - Q = 318 J - 597 J = - 279 J.
As the work is done by the system, so it will be denoted in negative sign and the magnitude of work done by the gas is 279 J.
There are four states of matter: solid, liquid, gas and plasma. Solid has a shape and volume of its own. A liquid takes the shape of the container does not occupy entirely the volume of the container. For gas, it takes the shape of the container as well as taking the volume of the container. In this case, if the system is only composed of gas, the statement given is true.