Answer:
381 different types of pizza (assuming you can choose from 1 to 7 ingredients)
Step-by-step explanation:
We are going to assume that you can order your pizza with 1 to 7 ingredients.
- If you want to choose 1 ingredient out of 7 you have 7 ways to do so.
- If you want to choose 2 ingredients out of 7 you have C₇,₂= 21 ways to do so
- If you want to choose 3 ingredients out of 7 you have C₇,₃= 35 ways to do so
- If you want to choose 4 ingredients out of 7 you have C₇,₄= 35 ways to do so
- If you want to choose 5 ingredients out of 7 you have C₇,₅= 21 ways to do so
- If you want to choose 6 ingredients out of 7 you have C₇,₆= 7 ways to do so
- If you want to choose 7 ingredients out of 7 you have C₇,₇= 1 ways to do so
So, in total you have 7 + 21 + 35 + 35 + 21 +7 + 1 = 127 ways of selecting ingredients.
But then you have 3 different options to order cheese, so you can combine each one of these 127 ways of selecting ingredients with a single, double or triple cheese in the crust.
Therefore you have 127 x 3 = 381 ways of combining your ingredients with the cheese crust.
Therefore, there are 381 different types of pizza.
In degrees: 3π/4 radians = 135°
Angle of x=135° is in the 2nd Quadrant and has negative cos x values and positive sin x values.
cos 135° = cos ( 90° + 45°)= - sin 45° =

sin 135° = sin ( 90° + 45° ) = cos 45° =

. You can also see the graph in the attachment.
Answer:
I think your forgot to add some parts of this question, because you can't do anything with this except simplify it down a little maybe. But, I will provide the simplified version of this.

= 
= 
= 
= 
= 
Step-by-step explanation:
Hope this helped!
1.208 ounce because 30.2 divided by 25 equals 1.208 ounces