Answer:
a) The discriminant of the equation = - 44
b)The nature of the roots will be imaginary.
c) ![x = \frac{2 +\sqrt{11} i}{15} or, x = \frac{2 - \sqrt{11} i}{15}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B2%20%2B%5Csqrt%7B11%7D%20i%7D%7B15%7D%20%20or%2C%20x%20%3D%20%5Cfrac%7B2%20-%20%5Csqrt%7B11%7D%20i%7D%7B15%7D)
Step-by-step explanation:
Here, the given expression is ![15x^{2} = 4x -1](https://tex.z-dn.net/?f=15x%5E%7B2%7D%20%20%3D%204x%20-1)
or, ![15x^{2} - 4x + 1 = 0](https://tex.z-dn.net/?f=15x%5E%7B2%7D%20%20-%20%204x%20%2B%201%20%20%20%3D%200)
Now the discriminant (D) of a quadratic equation ![ax^{2} +b x + c = 0](https://tex.z-dn.net/?f=ax%5E%7B2%7D%20%20%2Bb%20x%20%2B%20c%20%20%20%3D%200)
D = ![b^{2} - 4ac = (-4)^{2} - 4(15) (1) = 16 - (60) = -44](https://tex.z-dn.net/?f=b%5E%7B2%7D%20%20%20-%20%204ac%20%20%3D%20%28-4%29%5E%7B2%7D%20%20-%20%204%2815%29%20%281%29%20%20%3D%2016%20-%20%2860%29%20%3D%20-44)
Hence, the discriminant of the equation = - 44
As D< 0, so the roots will be imaginary.
Now,by quadratic formula : ![x = \frac{-b \pm \sqrt{b^{2} - 4ac} }{2a}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-b%20%5Cpm%20%5Csqrt%7Bb%5E%7B2%7D%20%20-%204ac%7D%20%7D%7B2a%7D)
So, here ![x = \frac{-(-4) \pm \sqrt{D} }{2a} = \frac{4 \pm \sqrt{(-44 )} }{30}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B-%28-4%29%20%5Cpm%20%5Csqrt%7BD%7D%20%7D%7B2a%7D%20%20%3D%20%5Cfrac%7B4%20%5Cpm%20%5Csqrt%7B%28-44%20%29%7D%20%7D%7B30%7D)
So, either ![x = \frac{4 + \sqrt{(-44 )} }{30} or, x = \frac{4 - \sqrt{(-44 )} }{30}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B4%20%2B%20%5Csqrt%7B%28-44%20%29%7D%20%7D%7B30%7D%20or%2C%20x%20%3D%20%20%5Cfrac%7B4%20-%20%5Csqrt%7B%28-44%20%29%7D%20%7D%7B30%7D)
or, ![x = \frac{2 +\sqrt{11} i}{15} or, x = \frac{2 - \sqrt{11} i}{15}](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B2%20%2B%5Csqrt%7B11%7D%20i%7D%7B15%7D%20%20or%2C%20x%20%3D%20%5Cfrac%7B2%20-%20%5Csqrt%7B11%7D%20i%7D%7B15%7D)
She should expect it to land on a even number 84 times
15 because he scores 5 runs I n each of the 3 games he played so you do 5x3=15.
We are given the height of Joe which is 1.6 meters, the length of his shadow is 2 meters when he stands 3 meters from the base of the floodlight.
First, we have to illustrate the problem. Then we can observe two right triangles formed, one is using Joe and the length of the shadow, the other is the floodlight and the sum of the distance from the base plus the length of the shadow. To determine the height of the floodlight, use ratio and proportion:
1.6 / 2 = x / (2 +3)
where x is the height of the flood light
solve for x, x = 4. Therefore, the height of the floodlight is 4 meters.
The number of possibilities for the first one is 50 choose 5, and the number of possibilities for the second one is 60 choose 6. Since 50 choose 5 is 2118760 and 60 choose 6 is 50063860. There are less possible outcomes for state "A" and therefore you have a higher chance of winning.