<u>Answer:</u>
<em>The average speed of the car is 66.9 km/h</em>
<u>Explanation:</u>
Here distance covered with the speed <em>57 km/h=7 km </em>
distance covered with the speed of <em>81 km/h=7 km</em>
<em>Average speed is equal to the ratio of total distance to the total time.
</em>
<em>total distance= 7 + 7= 14 km </em>
<em>
</em>
<em>time taken to cover the first 7 km= 7/57 h </em>
<em>time taken to cover the second part of the journey = 7/81 h
</em>
<em>average speed =
</em>
<u><em>Shortcut:
</em></u>
<em>When equal distances are covered with different speeds average speed=2 ab/(a+b) where a and b are the variable speeds in the phases.
</em>
Newton's first and second laws of motion both do, but I think the one you're looking for is: <em>The First Law of Motion</em>. That description is a little more direct.
It says that if an object is not acted on by a net external force, then it continues in "constant, uniform motion".
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
Answer:
Explanation:
When we are driving we need a lot of attention and concentration. Also one involved in driving should be consious and courteous
Thus, whenever a person is drives, and when he is disactracted by Mobile phones it will destroy his presence of mind.
It will good if use mobile after stopping the vehicle
Thanks
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s