Factors of 84: 1, 2<span>, </span>3<span>, 4, 6, </span>7<span>, 12, </span>14<span>, </span>21<span>, </span>28<span>, </span>42<span>, 84. Prime factorization: 84 = </span>2<span> x </span>2<span> x </span>3<span>x </span>7<span> which can also be written (</span>2^2<span>) x </span>3<span> x </span>7<span>.</span>
Answer:
Infinite number of solutions.
Step-by-step explanation:
We are given system of equations



Firs we find determinant of system of equations
Let a matrix A=
and B=![\left[\begin{array}{ccc}-1\\1\\-3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%5C%5C1%5C%5C-3%5Cend%7Barray%7D%5Cright%5D)


Determinant of given system of equation is zero therefore, the general solution of system of equation is many solution or no solution.
We are finding rank of matrix
Apply
and 
:![\left[\begin{array}{ccc}-5\\1\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C1%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply
:![\left[\begin{array}{ccc}-5\\6\\-5\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C-5%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-5\\6\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C6%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
Apply
and 
:![\left[\begin{array}{ccc}-5\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Apply 
:![\left[\begin{array}{ccc}-\frac{9}{2}\\\frac{13}{2}\\-\frac{1}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B9%7D%7B2%7D%5C%5C%5Cfrac%7B13%7D%7B2%7D%5C%5C-%5Cfrac%7B1%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Rank of matrix A and B are equal.Therefore, matrix A has infinite number of solutions.
Therefore, rank of matrix is equal to rank of B.
Step-by-step explanation:
Since both lines intersect each other 3 units above the x-axis, the y-value of the point of intersection must be 3.
Looking at the options, (-3, 5), (3, -2) and (0, -3) are all invalid points.
Answer:
Use the given functions to set up and simplify:
F(−2) and that equals to 13
Step-by-step explanation:
So, therefore, your answer to the problem is 13.
No. This is not random sampling as the students chose are not chosen at random. Random sampling would be something done where each sample has equal probability of being chosen. Clearly this is not random sampling.