The picture is not clear. let me assume
y = (x^4)ln(x^3)
product rule :
d f(x)g(x) = f(x) dg(x) + g(x) df(x)
dy/dx = (x^4)d[ln(x^3)/dx] + d[(x^4)/dx] ln(x^3)
= (x^4)d[ln(x^3)/dx] + 4(x^3) ln(x^3)
look at d[ln(x^3)/dx]
d[ln(x^3)/dx]
= d[ln(x^3)/dx][d(x^3)/d(x^3)]
= d[ln(x^3)/d(x^3)][d(x^3)/dx]
= [1/(x^3)][3x^2] = 3/x
... chain rule (in detail)
end up with
dy/dx = (x^4)[3/x] + 4(x^3) ln(x^3)
= x^3[3 + 4ln(x^3)]
For part a: you just need to find how far the vertex has been moved from the origin, or the point (0,0). As the vertex is at the point (2,-3), it has been translated right 2 horizontally and down 3 vertically.
For part b: you use the info found in part a to create the equation in the form of y=A(x-h)^2+k. In this case, A =1, so you can ignore it. The h value is the horizontal distance the vertex has been moved. Since it has been moved right 2, this part of the equation would be (x-2). I know it seems like it should be plus 2, but values in parentheses come out opposite. For the k value, find the vertical shift, which is down3, or -3.
Now that you have h and k, substitute them back into the equation.
Your final answer for part b is: y=(x-2)^2 -3.
Know that:
sin(β)=Opposite/Hypotenuse
Therefore:
sin(54)=x/10
Therefore:
x=10*sin(54)
x=8.1 (To the nearest tenth)