Answer:
you didn't ask a question so here is your explanation.
Explanation:
Q = mc∆T. Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/kg∙K) ∆ is a symbol meaning "the change in"
Mai hu
mai apse baat kar sakti hu
Answer:
Horse latitude, trade winds
Explanation:
- The area of the low pressure or the calm consists of the variable light winds that blow near the equator are known to the marines as the doldrums and they form a circuital pattern near the earth atmosphere.
- Forms at a center of the near the higher pressure systems called as the horse latitudes where the trade winds at the surface are weak and variable and this zone is found generally in latitudes of the 30° North and South of the equator and move in an east to west direction.
Answer:
<h2>4. Na+ diffusing toward the side of the membrane with Cl− and 50% less Na+.</h2>
Explanation:
Facilitated diffusion is a type of transport mechanism in which the special proteins are involved and play an important role in the transport of the atoms, ions or molecules. This mechanism is based on the electrochemical gradient differences. When this difference increase, then the transport of the sodium takes place because sodium ions are chemically attracted by chloride ions. In a facilitated diffusion process, no energy requirement takes place. This process occurs along the concentration gradient.
Answer:
3–methyl–2–butanol
Explanation:
To name the compound, we must:
1. Identify the functional group.
2. Give the functional group of the compound the lowest possible count.
3. Locate the longest continuous carbon chain. This gives the parent name of the compound.
4. Identify the substituent group attached.
5. Give the substituent group the lowest possible count.
6. Combine the above to get the name of the compound.
Now, let us obtain the name of the compound.
1. The functional group of the compound is Alcohol i.e —OH.
2. The functional group is located at carbon 2.
3. The longest continuous carbon chain is carbon 4 i.e butane. But the presence of the functional group i.e OH will replace the –e in butane with –ol. Therefore, the compound is butanol.
4. The substituent group attached is methyl i.e CH3.
5. The substituent group is located at carbon 3.
6. Therefore, the name of the compound is:
3–methyl–2–butanol.