They speed up reactions by lowering activation energy. Many enzymes change shape when substrates bind.
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Answer:
Explanation:
Just saw your request regarding answering this so here it is:
All of them belong of Group 1 in periodic table and thus are highly reactive! Pattern of reactivity for Group 1 (Alkali metals) increases as you move down the group as their radius keeps increasing and thus electrons can be easily lost. Thus, to ID the lumps, Sheena should look at their reactivity and she should get the following trend:
Most reactive: Potassium (K)
Intermediate: Sodium (Na)
Least reactive: Lithium (Li)
Hope it helps!