Option C is the correct set of the problem for mass of water produced by 3.2 moles of oxygen and an excess ethene.
<h3>
Reaction between oxygen and ethene</h3>
Ethene (C2H4) burns in the presence of oxygen (O2) to form carbon dioxide (CO2) and water (H2O) along with the evolution of heat and light.
C₂H₄ + 3O₂ ----- > 2CO₂ + 2H₂O
from the equation above;
3 moles of O₂ ---------> 2(18 g) of water
3.5 moles of O₂ ----------> x
![x = 3.2 \times [\frac{2 \ moles \ H_2O}{3 \ moles \ O_2} ] \times[ \frac{18.02 \ g \ H_2O}{1 \ mole \ H_2O} ]](https://tex.z-dn.net/?f=x%20%3D%203.2%20%5Ctimes%20%5B%5Cfrac%7B2%20%5C%20moles%20%5C%20H_2O%7D%7B3%20%5C%20moles%20%5C%20O_2%7D%20%20%5D%20%5Ctimes%5B%20%5Cfrac%7B18.02%20%5C%20g%20%5C%20H_2O%7D%7B1%20%5C%20mole%20%5C%20H_2O%7D%20%5D)
Thus, option C is the correct set of the problem for mass of water produced by 3.2 moles of oxygen and an excess ethene.
Learn more about reaction of ethene here: brainly.com/question/4282233
#SPJ1
The electronegativity of nitrogen (N) is 3.0, while the electronegativity of hydrogen (H) is 2.1. As it can be seen that nitrogen (N) is more electronegative than that of hydrogen (H),
So electron pairs are attracted towards nitrogen and thus it carries a partial negative charge and hydrogen carries a partial positive charge. The image of electron distribution is attached as follows.
Thus NH₃ is a polar molecule .
Answer:
HOAc is stronger acid than HClO
ClO⁻ is stronger conjugate base than OAc⁻
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
Explanation:
Assume 0.10M HOAc => H⁺ + OAc⁻ with Ka = 1.8 x 10⁻⁵
=> [H⁺] = √Ka·[Acid] =√(1.8 x 10⁻⁵)(0.10) M = 1.3 x 10⁻³M H⁺
Assume 0.10M HClO => H⁺ + ClO⁻ with Ka = 3 x 10⁻⁸
=> [H⁺] = √(3 x 10⁻⁸)(0.10)M = 5.47 x 10⁻⁵M H⁺
HOAc delivers more H⁺ than HClO and is more acidic.
Kb = Kw/Ka, Kw = 1 x 10⁻¹⁴
Kb(OAc⁻) = 5.5 x 10⁻¹⁰
Kb(ClO⁻) = 3.3 x 10⁻⁷
The arrangement of particles that make up an ionic compound would be an ionic lattice type of crystal arrangement. An ionic lattice type of structure will be formed due to many of the ionic bonds formed between the oppositely charged ions of the metal and nonmetal.