Explanation:
A reaction quotient is defined as the ratio of concentration of products over reactants raised to the power of their stoichiometric coefficients.
A reaction quotient is denoted by the symbol Q.
For example, 
The reaction quotient for this reaction is as follows.
Q = ![\frac{[Fe^{2+}]^{2}[Zn^{2+}]}{[Fe^{3+}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BFe%5E%7B2%2B%7D%5D%5E%7B2%7D%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5E%7B2%7D%7D)
[Zn] will be equal to 1 as it is present in solid state. Therefore, we don't need to write it in the reaction quotient expression.
The volume is 2.23 liters of hydrogen gas.
<u>Explanation</u>:
moles of C = grams / molecular mass of C
= 1.04 g / 12.011 g/mol.
= 0.086
The ratio between C and H2 is 1 : 1
moles H2 = 0.086
V = nRT / p
= 0.086 x 0.08206 x 316 K / 1.0 atm
V = 2.23 L.