Half life is the time taken by a radioactive isotope to decay by half its original mass. In this case, the halflife of the radioactive isotope is 5000 years.
Initially the mass is 100 %; thus the mass that will be left will be given by;
New mass = Original mass × (1/2)^n where n is the number of half lives;
n = 10000/5000 = 2
New mass = 100% ×(1/2)^2
= 100 % × 1/4
= 25%
Therefore; the mass left after 10000 years is 25% or 1/4 of the original mass.
<span>In a mole of anything, there are 6.023 x 10^23 units. So, in 3.9 moles of sulfur, there are 3.9 * 6.023 x 10^23 = 23 x 10^23 = 2.3 x 10^24 atoms (keeping only 2 sig figs). Hope I help!!
</span>
Ms ( mass of solute): 33,6g
mss (mass of solution): 33,6+192g = 225,6g
__________________
C = ms/mss × 100%
C = 33.6/225.6 × 100%
C = 14,89% ≈ 14,9%
:•)
Answer:
34.9 g/mol is the molar mass for this solute
Explanation:
Formula for boiling point elevation: ΔT = Kb . m . i
ΔT = Temperatures 's difference between pure solvent and solution → 0.899°C
Kb = Ebullioscopic constant → 0.511°C/m
m = molality (moles of solute/1kg of solvent)
i = 2 → The solute is a strong electrolyte that ionizes into 2 ions
For example: AB ⇒ A⁺ + B⁻
Let's replace → 0.899°C = 0.511 °C/m . m . 2
0.899°C / 0.511 m/°C . 2 = m → 0.879 molal
This moles corresponds to 1 kg of solvent. Let's determine the molar mass
Molar mass (g/mol) → 30.76 g / 0.879 mol = 34.9 g/mol