1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
13

PLEASE HELP BEFORE 10:00AM EST PLEASE!!!!!!!!! PLEASE SHOW WORK IF YOU CAN!!

Mathematics
1 answer:
Tju [1.3M]3 years ago
3 0
1. answer is $246.68 (rounded) because 230 x 1.0725 (multiplier) is $246.675.
2. answer is B
3. answer is A rounded because you will get (51.5962...)
4. answer is A because when divide 40 by 42.59 you get 1.06475 (but that is the multiplier) so the answer is A
5. answer is A because 12000x 1.04 is 12480 and 12480-12000=480
6.I guess the answer is D but the total he earns is $2440 but from the one car he earns $2240 +$200 (which he earns anyway)
7.answer is A $9.16
8. the answer is B
(J-)Hope this helps
You might be interested in
A scuba diver descends farther down into the ocean from an initial depth of 12.8 feet below sea level. The scuba diver descends
Kay [80]

Answer:

r \geqslant 10.4

4 0
2 years ago
What is the midpoint of a line segment with the endpoints (8, -3) and (-5, -9)?
ioda
I think is is (-6,1.5) correct me if i am wrong
4 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
QUICK !!!
Alexxx [7]
Looks to me like y= x + 1
5 0
3 years ago
Simplify 3+7x-(2+9x)
viva [34]

Answer:

-2x + 1

Step-by-step explanation:

3 + 7x - (2 + 9x)

Distribute the negative:

3 + 7x - 2 - 9x

Combine like terms:

-2x + 1

8 0
3 years ago
Other questions:
  • Find the missing values of the variables
    5·1 answer
  • Write each rate as a unit rate 72 ounces in 6 steaks
    11·2 answers
  • Round 18.194 to the place named
    8·1 answer
  • Help me with this question
    9·1 answer
  • What is this answer
    9·1 answer
  • Slove all of it please 100 points
    11·2 answers
  • The junior class at Summerfield High School sold a total of 375 tickets for their spring festival. The adult tickets sold for $7
    12·1 answer
  • Pls help me I’ll make u brainly
    7·1 answer
  • PLEASE HELP!!!
    10·1 answer
  • Quiero saber el resultado de este ejercicio de polinomios (×-8)2
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!