1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Triss [41]
2 years ago
14

roger ran 13.2 miles in 1.6 hours. Ana ran 10.85 miles in 1.4 hours. who had the faster average speed? How much faster? Explain.

Mathematics
1 answer:
swat322 years ago
8 0

Answer:

roger

Step-by-step explanation:

he ran at 8.25 miles/hr and Ana ran at 7.75 miles/hr

You might be interested in
Escribe una ecuación de la recta que pasa por el punto (5, –8) con pendiente 5.
Nana76 [90]

Considerando la expresión de una ecuación lineal, la ecuación de la recta que pasa por el punto (5, –8) con pendiente 5 es y= 5x - 33.

<h3>Ecuación lineal</h3>

Una ecuación lineal o línea se puede expresar en la forma y = mx + b

donde

  • x y son coordenadas de un punto.
  • m es la pendiente.
  • b es la ordenada al origen y representa la coordenada del punto donde la línea cruza el eje y.

La ecuación lineal se puede expresar también mediante la ecuación punto-pendiente de la recta, que se plantea si se conoce la pendiente de la recta y cualquiera de sus puntos. Con ello queda determinada la recta, conociendo la pendiente  “m” y un punto  (x1, y1) dado:

y - y1= m(x -x1)

<h3>Ecuación de la recta en este caso</h3>

En este caso, la recta que pasa por el punto (5, –8) con pendiente 5.

Reemplazando en la ecuación punto-pendiente de la recta:

y - (-8)= 5(x -5)

Resolviendo:

y + 8= 5(x -5)

Aplicando propiedad distributiva:

y + 8= 5x - 5×5

y + 8= 5x - 25

Aislando la variable "y":

y= 5x - 25 - 8

<u><em>y= 5x - 33</em></u>

Finalmente, la ecuación de la recta que pasa por el punto (5, –8) con pendiente 5 es y= 5x - 33.

Aprende más sobre ecuación de una recta:

brainly.com/question/25243069

brainly.com/question/19260315

brainly.com/question/24766917

#SPJ1

4 0
1 year ago
Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do n
aliya0001 [1]

Answer:

f(x)=\sum_{n=1}^{\infty}(-1)^{(n-1)}2^{n}\dfrac{x^n}{n}

Step-by-step explanation:

The Maclaurin series of a function f(x) is the Taylor series of the function of the series around zero which is given by

f(x)=f(0)+f^{\prime}(0)x+f^{\prime \prime}(0)\dfrac{x^2}{2!}+ ...+f^{(n)}(0)\dfrac{x^n}{n!}+...

We first compute the n-th derivative of f(x)=\ln(1+2x), note that

f^{\prime}(x)= 2 \cdot (1+2x)^{-1}\\f^{\prime \prime}(x)= 2^2\cdot (-1) \cdot (1+2x)^{-2}\\f^{\prime \prime}(x)= 2^3\cdot (-1)^2\cdot 2 \cdot (1+2x)^{-3}\\...\\\\f^{n}(x)= 2^n\cdot (-1)^{(n-1)}\cdot (n-1)! \cdot (1+2x)^{-n}\\

Now, if we compute the n-th derivative at 0 we get

f(0)=\ln(1+2\cdot 0)=\ln(1)=0\\\\f^{\prime}(0)=2 \cdot 1 =2\\\\f^{(2)}(0)=2^{2}\cdot(-1)\\\\f^{(3)}(0)=2^{3}\cdot (-1)^2\cdot 2\\\\...\\\\f^{(n)}(0)=2^n\cdot(-1)^{(n-1)}\cdot (n-1)!

and so the Maclaurin series for f(x)=ln(1+2x) is given by

f(x)=0+2x-2^2\dfrac{x^2}{2!}+2^3\cdot 2! \dfrac{x^3}{3!}+...+(-1)^{(n-1)}(n-1)!\cdot 2^n\dfrac{x^n}{n!}+...\\\\= 0 + 2x -2^2  \dfrac{x^2}{2!}+2^3\dfrac{x^3}{3!}+...+(-1)^{(n-1)}2^{n}\dfrac{x^n}{n}+...\\\\=\sum_{n=1}^{\infty}(-1)^{(n-1)}2^n\dfrac{x^n}{n}

3 0
2 years ago
Given that tan θ ≈ 1.072, where 0 &lt; θ &lt; , 2 π find the values of sin θ and cos θ.
anygoal [31]

Answer:

The answer to your question is

sin Ф = 0.731 and sinФ = -0.731; cos Ф 0.682 and cos Ф = -0.682

Step-by-step explanation:

tan Ф = 1.072,  0 < Ф < 2 π,   tan Ф is positive, find the solution in the first and third quadrangle.

- tan Ф = opposite side / adjacent side

- 1.072 / 1 = opposite side / adjacent side

- opposite side = 1.072 and adjacent side = 1

  Calculate hypotenuse

  c² = a² + b²

  c² = 1.072² + 1²

  c² = 2.149

  hypotenuse = c = 1.466

First quadrangle

  sin Ф = 1.072 / 1.466 = 0.731

  cos Ф = 1 / 1.466 = 0.682

Third quadrangle

  sin Ф = -1.072 / 1.466 = -0.731

  cos Ф = -1 / 1.466 = -0.682

5 0
2 years ago
Hi can someone help me with the last two sets of shapes? Thank you so much! -Jenn
SOVA2 [1]
You are correct there's at least one obtuse angle
8 0
3 years ago
Do the ratios 3/4 and 4/8 from a proportion
RoseWind [281]

Answer:

no. because they are bot equivalent ratios or proportions

3 0
2 years ago
Other questions:
  • Yuka buys 6 pounds of apples at $0.50 a pound. She also buys 6 pounds of bananas. Altogether, the fruit costs $12.00. What is th
    11·2 answers
  • A doctor estimates that a particular patient is losing bone density at a rate of 3% annually. The patient currently has a bone d
    11·2 answers
  • 10r-5r+3r-8r what the answer
    7·1 answer
  • What proportion of a normal distribution is located between z = 1.00 and z = 1.50?
    7·1 answer
  • Determine the exact value
    12·1 answer
  • I need help with this problem :)
    9·1 answer
  • The art club had an election to select a president. 56 members voted in the election and 24 did not vote. What percentage of the
    8·1 answer
  • I need to find how many solutions does the system have. ​
    10·1 answer
  • The corner store sells carrots at a rate of $1.50 per carrot. If Isabella has $6.00 dollars, how many carrots
    6·2 answers
  • Its for science but its got math involved<br>its got to do with speed, time, and distance​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!