Water is always on the move. Rain falling today may have been water in a distant ocean days before. And the water you see in a river or stream may have been snow on a high mountaintop. Water is in the atmosphere, on the land, in the ocean, and underground. It moves from place to place through the water cycle.
Where's the water?
There are about 1.4 billion km3 of water (336 million mi3 of water) on Earth. That includes liquid water in the ocean, lakes, and rivers. It includes frozen water in snow, ice, and glaciers, and water that’s underground in soils and rocks. It includes the water that’s in the atmosphere as clouds and vapor.
If you could put all that water together – like a gigantic water drop – it would be 1,500 kilometers (930 miles) across.
Answer:
Answer: A) .346 M
Explanation:
Given:
- 450 mL
- .5 M soln
-200 mL water
1) Convert mL to L
450 mL = .45 L
200 mL = .2 L
2) Find mols in solution
.5 M = x/.45 L
x = .225 mol
3) Find total volume of solution
.45 L + .2 L =.65 L
4) Find new molarity
molarity (M) = mols solute/ L solution
y = .225 mol (from step 2)/ .65 L (from step 3)
y = .346 M
Answer: A) .346 M
Answer:
photo is blurred plese send photo clearly
Answer:
b
Explanation:
The reaction that is not a displacement reaction from all the options is 
In a displacement reaction, a part of one of the reactants is replaced by another reactant. In single displacement reactions, one of the reactants completely displaces and replaces part of another reactant. In double displacement reaction, cations and anions in the reactants switch partners to form products.
<em>Options a, c, d, and e involves the displacement of a part of one of the reactants by another reactant while option b does not.</em>
Correct option = b.
Answer:
23.92 g
Explanation:
Molar mass of H2SO4 = (2×1)+32+(16×4)= 2+32+48= 82g/mol
H2SO4 + 2NaOH ---> Na2SO4 + 2H2O
I mole of H2SO4 = 2 moles of NaOH
24.5/82 = 24.5/82 × 2
= 0.598 moles of NaOH will neutralize
Mass= mole× molar mass
Molar mass of NaOH= 23+16+1 = 40g/mol
Mass= 0.598 × 40 = 23.92g of NaOH