In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>
Obsidian - extrusive igneous
granite - clastic sedimentary
conglomerate - intrusive igneous
evaporite - chemical sedimentary
coal - organic sedimentary
marble - metamorphic
Answer:
Q = ne
Explanation:
Ler n be the number of electrons transferred and Q be the charge of an ion.
The net charge on the object is then given by :
Q = ne
Where
e is the electronic charge
Hence, the charge of an ion relates to the number of electrons transferred is equal to Q = ne.
Silver chloride produced : = 46.149 g
Limiting reagent : CuCl2
Excess remains := 3.74 g
<h3>Further explanation</h3>
Reaction
silver nitrate + copper(II) chloride ⇒ silver chloride + copper(II) nitrate
Required
silver chloride produced
limiting reagent
excess remains
Solution
Balanced equation
2AgNO3 (aq) + CuCl2 (s) → 2AgCl(s) + Cu(NO3)2(aq)
mol AgNO3 :
= 58.5 : 169,87 g/mol
= 0.344
mol CuCl2 :
=21.7 : 134,45 g/mol
= 0.161
mol ratio : coefficient of AgNO3 : CuCl2 :
= 0.344/2 : 0.161/1
= 0.172 : 0.161
CuCl2 as a limiting reagent
mol AgCl :
= 2/1 x 0.161
= 0.322
Mass AgCl :
= 0.322 x 143,32 g/mol
= 46.149 g
mol remains(unreacted) for AgNO3 :
= 0.344-(2/1 x 0.161)
= 0.022
mass AgNO3 remains :
= 0.022 x 169,87 g/mol
= 3.74 g