Answer:
7.03 g
Explanation:
Step 1: Write the balanced synthesis reaction
N₂(g) + 3 H₂(g) ⇒ 2 NH₃(g)
Step 2: Calculate the moles corresponding to 32.5 g of N₂
The molar mass of N₂ is 28.01 g/mol.
32.5 g × 1 mol/28.01 g = 1.16 mol
Step 3: Calculate the number of moles of H₂ needed to react with 1.16 moles of N₂
The molar ratio of N₂ to H₂ is 1:3. The moles of H₂ needed are 3/1 × 1.16 mol = 3.48 mol.
Step 4: Calculate the mass corresponding to 3.48 moles of H₂
The molar mass of H₂ is 2.02 g/mol.
3.48 mol × 2.02 g/mol = 7.03 g
Answer:
Higher pressure, is the right answer.
Explanation:
The A will have a higher pressure. Since we have given the volume and temperature is same in both containers A and B. Below is the calculation for proof that shows which container has the higher pressure while keeping the volume and temperature the same.

Therefore, the container “A” will have higher pressure.
Answer: option B. - A, B, D, E, C, H, F, G is correct using the principle of cross-cutting relationships.
The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through.
Explanation:
The full sequence of events is:
1. Layer A formed.
2. Layer B formed
3. Layer D formed.
4. Layer E formed
5. After layers A-B-D-E were present, intrusion C cut across all three.
6. Fault H formed, shifting rocks E through A and intrusion C.
7. Weathering and erosion created a layer of soil on top of layer F then G.
Answer:
B₃Si
Explanation:
Let's take break it down. From triboron silicide;
Tri - Three
Triboron - Three boron atoms
Silicide - Silicon (with an -ide suffix)
The formular is given as;
B₃Si
Professor of Physics Carlo Rubbia