<span>In order to solve this problem you must first make sure all your numbers are in like terms. From the density value you can see that it is grams per liter. The first conversion you must do in convert the 125.0 mL value to Liters which you would do by dividing by 1000 because 1 liter is equal to 1000 mL. 125.0 divided by 1000 is 0.125 Liter. Now you will use the density equation to solve. The density equation is density is equal to mass divided by volume. Plug in your known numbers for density and volume. Then solve for mass. So Density (1.269 g/l is equal to mass divided by volume (.125 Liter) You must rearrange the equation to multiple density by volume which is 1.269 times 0.125 which will give you 0.1586. Because the Liters cancel each other out, the answer's unit will be grams. Your final answer is 0.1586 grams.</span>
Answer:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Explanation:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
The above equation can be balance as illustrated below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
There are 16 atoms of H on the left side and 1 atom on the right side. It can be balance by writing 16 before HF as shown below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + 16HF + CoF₂
There are 3 atoms of F on the left side and a total of 34 atoms on the right side. It can be balance by writing 32 before CoF₃ and 32 before CoF₂ as shown below:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Now, the equation is balanced.
The answer to your question is: Chemical Reaction.
<span>69.3 g
First, determine the molar masses involved:
Atomic weight iron = 55.845
Atomic weight carbon = 12.0107
Atomic weight oxygen = 15.999
Molar mass Fe2O3 = 2 * 55.845 + 3 * 15.999 = 159.687 g/mol
Molar mass CO = 12.0107 + 15.999 = 28.0097 g/mol
Determine how many moles of each reactant we have
Moles Fe2O3 = 189 g / 159.687 g/mol = 1.18356535 mol
Moles CO = 63.0 g / 28.0097 g/mol = 2.249220806 mol
For every mole of Fe2O3, we need 3 moles of CO. So let's see how many moles of Fe2O3 is consumed by dividing moles CO by 3.
2.249220806 mol / 3 = 0.749740269 mol
So we'll be consuming 0.749740269 moles of Fe2O3, subtract that from what we started with
1.18356535 mol - 0.749740269 mol = 0.433825081 mol
Now multiply by the molar mass of Fe2O3
0.433825081 mol * 159.687 g/mol = 69.27622574 g
Rounding to 3 significant figures gives 69.3 g</span>
Answer:
Explanation: F=umg where u is coefficient of kinetic friction.
But F=ma.
a = u^2/2S
U= 425km/hr = (425*1000)/3600 =118m/s
S= 6.7km = 6700m
a = 118*118/ (2*6700) = 1.04m/s
u = 1.04/9.8 =0.11