<h2><u>Answer:</u></h2>
As you are looking for a new tennis partner. People should keep in mind that they should go for the one who most likely demonstrate good sportsmanship
Luis, when you pursue the principles in tennis, you realize when to talk up, you don't blast a racquet or shout, holler.
Whatever it is following the principles and being respectful it the most ideal approach.
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '
' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴
× 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴
= 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A',
= 240 N.
Temperature is measured with a thermometer
The speed he was moving at when he finished falling is 30 m/s.
The given parameters;
mass of the bungee, m = 80 kg
impulse provided by the rope, J = 3200 Ns
initial upward velocity of the jumper, u = 10 m/s
- Let the final velocity after falling = v
- Let the upwards motion = negative
- Let the downwards motion when falling = positive
Apply the principle of conservation of linear momentum;
J = ΔP = Δmv = m(v - u)
3200 = 80(v - (-10))
3200 = 80(v + 10)

Thus, the speed he was moving at when he finished falling is 30 m/s.
Learn more here:brainly.com/question/19027317