3. Due to the fact that friction is not converted to kinetic energy nor potential energy. The energy is converted into heat energy which is lost and can’t be put back
Answer:
<h3>The answer is 5160 N</h3>
Explanation:
To find the force acting on an object given it's mass and acceleration we use the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 1720 kg
acceleration = 3.0 m/s²
We have
Force = 1720 × 3
We have the final answer as
<h3>5160 N</h3>
Hope this helps you
Answer:
v = 12.4 [m/s]
Explanation:
With the speed and Area information, we can determine the volumetric flow.

where:
r = radius = 0.0120 [m]
v = 2.88 [m/s]
![A=\pi *(0.0120)^{2} \\A=4.523*10^{-4} [m]\\](https://tex.z-dn.net/?f=A%3D%5Cpi%20%2A%280.0120%29%5E%7B2%7D%20%5C%5CA%3D4.523%2A10%5E%7B-4%7D%20%5Bm%5D%5C%5C)
Therefore the flow is:
![V=2.88*4.523*10^{-4} \\V=1.302*10^{-3} [m^{3}/s ]](https://tex.z-dn.net/?f=V%3D2.88%2A4.523%2A10%5E%7B-4%7D%20%5C%5CV%3D1.302%2A10%5E%7B-3%7D%20%5Bm%5E%7B3%7D%2Fs%20%5D)
Despite the fact that you cover the inlet with the finger, the volumetric flow rate is the same.
![v=V/A\\v=1.302*10^{-3} /1.05*10^{-4} \\v=12.4[m/s]](https://tex.z-dn.net/?f=v%3DV%2FA%5C%5Cv%3D1.302%2A10%5E%7B-3%7D%20%2F1.05%2A10%5E%7B-4%7D%20%5C%5Cv%3D12.4%5Bm%2Fs%5D)
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.
Answer:
410.4J
Explanation:
Step one:
given
mass= 3.35kg
weight= 3.35*9.81= 32.86N
h=12.49m
Required
The net work done
Step two:
the work done is given as
WD= force* distance
WD= 32.86*12.49
WD= 410.4J