The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
Answer:
The moon keeps the same face pointing towards the Earth because its rate of spin is tidally locked so that it is synchronized with its rate of revolution (the time needed to complete one orbit). In other words, the moon rotates exactly once every time it circles the Earth.
Answer:
As the capacitor is discharging, the current is increasing
Explanation:
Lets take
C= Capacitance
L=Inductance
V=Voltage
I= Current
The total energy E given as

We know that total energy E is conserved so when electric energy 1/2 CV² decreases then magnetic energy 1/2 IL² will increases.
It means that when charge on the capacitor decreases then the current will increase.
As the capacitor is discharging, the current is increasing
Since the ball was not moving before it let Aiden's hand, the formula used to calculate the acceleration is

, where a is acceleration, v is velocity and t is the time. We put them in the formula and get

The acceleration is 490 m/s^2
Answer:
1.71 km
Explanation:
Convert 30 minutes to seconds:
30 min × (60 s / min) = 1800 s
Find the displacement:
0.95 m/s × 1800 s = 1710 m
Convert to kilometers:
1710 m × (1 km / 1000 m) = 1.71 km