Answer:
0.278 mol
Explanation:
Step 1: Given and required data
Mass of acetic acid (m): 16.7 g
Chemical formula of acetic acid: CH₃COOH (C₂H₄O₂)
Step 2: Calculate the molar mass (M) of acetic acid
We will use the following expression.
M(C₂H₄O₂) = 2 × M(C) + 4 × M(H) + 2 × M(O)
M(C₂H₄O₂) = 2 × 12.01 g/mol + 4 × 1.01 g/mol + 2 × 16.00 g/mol = 60.06 g/mol
Step 3: Calculate the number of moles (n) of acetic acid
We will use the following expression.
n = m/M
n = 16.7 g/(60.06 g/mol) = 0.278 mol
The nervous system sends signals to the muscles to shiver when our body temperature begins to drop to a lower than normal temperature. the slight movement of the muscles will work to bring temperature back to homeostasis
Answer:
The rate of leakage will be higher for helium; its molecules move about 3 times faster than oxygen’s
Explanation:
Step 1: Data given
Molar mass helium = 4.0 g/mol
Molar mass O2 = 32 g/mol
Step 2: Graham's law
Graham's Law of Effusion states that the rate of effusion of a gas is inversely proportional to the square root of the molecular mass : 1/(Mr)^0.5
Rate of escape for He = 1/(4.0)^0.5 = 0.5
Rate of escape for O2 = 1/(32)^0.5 = 0.177
The rate of leakage will be higher for helium; its molecules move about 3 times faster than oxygen’s
Answer:
This element is Boron. The atomic number is 5
Explanation: