Answer:
c = 0.13 j/ g.°C
Explanation:
Given data:
Mass of mercury = 29.5 g
Initial temperature = 32°C
Final temperature = 161°C
Heat absorbed = 499.2 j
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Q = m.c. ΔT
ΔT = T2 - T1
ΔT = 161°C - 32°C
ΔT = 129 °C
Q = m.c. ΔT
c = Q / m. ΔT
c = 499.2 j / 29.5 g. 129 °C
c = 499.2 j / 3805.5 g. °C
c = 0.13 j/ g.°C
Answer:
Liquid to solid liquid to gas
Explanation:
Boiling a liquid result in a gas
I think it was from los griegos but a long time a go because he was making and experiment with and apple and he notice that he couldn’t cut more so he name it atoms (sorry for my bad English I don’t speak English)
Answer:
2.77 mL of boiling water is the minimum amount which will dissolve 500 mg of phthalic acid.
Explanation:
We know from the problem that 18 g of phthalic acid are dissolved in 100 mL of water at 99 °C.
Now we devise the following reasoning:
If 18 g of phthalic acid are dissolved in 100 mL of water at 99 °C
Then 0.5 g of phthalic acid are dissolved in X mL of water at 99 °C
X = (0.5 × 100) / 18 = 2.77 mL of water
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.