Answer:
Kf > Ka = Kb > Kc > Kd > Ke
Explanation:
We can apply
E₀ = E₁
where
E₀: Mechanical energy at the beginning of the motion (top of the incline)
E₁: Mechanical energy at the end (bottom of the incline)
then
K₀ + U₀ = K₁ + U₁
If v₀ = 0 ⇒ K₀
and h₁ = 0 ⇒ U₁ = 0
we get
U₀ = K₁
U₀ = m*g*h₀ = K₁
we apply the same equation in each case
a) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
b) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
c) U₀ = K₁ = m*g*h₀ = 35 Kg*9.81 m/s²*4m = 1373.40 J
d) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*16m = 1098.72 J
e) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*4m = 274.68 J
f) U₀ = K₁ = m*g*h₀ = 105 Kg*9.81 m/s²*6m = 6180.30 J
finally, we can say that
Kf > Ka = Kb > Kc > Kd > Ke
Answer:
150J
Explanation:
work output/work input=100%
so just make work output the subject
Answer:
option D
Explanation:
Power = work divided by time
and Work is equal to force multiplied by displacement
therefore power =
please mark me brainliest and 5 star
It's D. By "net" they mean the overall force the object experiences, so sum all the force vectors, those in a negative direction (eg friction) should be subtracted.
Answer:K.E=449598.5j
Explanation:
Kinetic energy of a moving car=1/2mv^2
Where m is the mass of the car
And V is the velocity of the car
K.E=1/2 ×1300×26.3^2
K.E=449598.5j