Answer:
i think maybe because it has more than 6 or 5 parts.
Do you remember the formula for potential energy ?
PE = (mass) (gravity) (height)
If the mass and the height are always the same, then the least PE comes from the least gravity. Surely you can find THAT in the table.
Answer:
Approximately
assuming no heat exchange between the mixture and the surroundings.
Explanation:
Consider an object of specific heat capacity
and mass
. Increasing the temperature of this object by
would require
.
Look up the specific heat of water:
.
It is given that the mass of the water in this mixture is
.
Temperature change of the water:
.
Thus, the water in this mixture would have absorbed :
.
Thus, the energy that water absorbed was:
.
Assuming that there was no heat exchange between the mixture and its surroundings. The energy that the water in this mixture absorbed,
, would be the opposite of the energy that the metal in this mixture released.
Thus:
(negative because the metal in this mixture released energy rather than absorbing energy.)
Mass of the metal in this mixture:
.
Temperature change of the metal in this mixture:
.
Rearrange the equation
to obtain an expression for the specific heat capacity:
. The (average) specific heat capacity of the metal pieces in this mixture would be:
.
Answer:
T = 0.71 seconds
Explanation:
Given data:
mass m = 1Kg, spring constant K = 78 N/m, time period of oscillation T = 0.71 seconds.
We have to calculate time period when this same spring-mass system oscillates vertically.
As we know

This relation of time period is true under every orientation of the spring-mass system, whether horizontal, vertical, angled or inclined. Therefore, time period of the same spring-mass system oscillating vertically too remains the same.
Therefore, T = 0.71 seconds