1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lera25 [3.4K]
3 years ago
10

3. What is the kinetic energy of a 1300 kg car moving at 26.3 m/s?

Physics
1 answer:
Alexxx [7]3 years ago
3 0

Answer:K.E=449598.5j

Explanation:

Kinetic energy of a moving car=1/2mv^2

Where m is the mass of the car

And V is the velocity of the car

K.E=1/2 ×1300×26.3^2

K.E=449598.5j

You might be interested in
A typical adult can deliver about 12.5 N·m of torque when attempting to open a twist-off cap on a bottle. Assume that bottle cap
Nikitich [7]
Uhhhhhhhhh just tryna get a point so I can ask a question so eh I’m using ur question heheheheheh
3 0
3 years ago
A bolt is dropped from a bridge under construction, falling 96 m to the valley below the bridge. (a) How much time does it take
irakobra [83]

Answer:

a)It takes the bolt 0.25 s to pass the last 11% of the fall.

b)When the bolt begins to fall the last 11% of the fall its velocity is -41.2 m/s.

c)The velocity of the bolt just before it reaches the ground is -43.6 m/s

Explanation:

Hi there!

a) Let´s calculate how much distance it is the last 11% of the fall:

96 m · 0.11 = 10.56 m

So, we have to find how much time it takes the bolt to pass from a height of 10.56 m to the ground.

First, let´s calculate how much time it takes the bolt to reach a height of 10.56 m. For that we can use this equation:

h = h0 + v0 · t + 1/2 · g · t²

Where:

h = height of the bolt at a time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity.

If we consider the ground as the origin of the frame of reference, then h0 = 96 m. Since the bolt is dropped, the initial velocity is zero (v0 = 0). Then, the equation gets reduce to this:

h = h0 + 1/2 · g · t²

We have to find at which time h = 10.56 m.

10.56 m = 96 m - 1/2 · 9.8 m/s² · t²

Solving for t:

√(-2 · (10.56 m - 96 m) / 9.8 m/s²) = t

t = 4.2 s

Now that we have the time at which the bolt is located at 10.56 m above the ground, we can calculate the velocity of the bolt at that time.

The equation of velocity (v) of the bolt is the following:

v = v0 + g · t

at t = 4.2 s.

v = 0 - 9.8 m/s² · 4.2 s

v = -41.2 m/s

<u>When the bolt begins to fall the last 11% of the fall its velocity is -41.2 m/s.</u>

Now, we can calculate how much time it takes to fall the last 10.56 m.

The initial velocity of the bolt will be the velocity at h = 10.56 m. The initial height will be 10.56 m.

h = h0 + v0 · t + 1/2 · g · t²

We have to find the time at which h = 0 (the bolt hits the ground)

0 = 10.56 m - 41.2 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 0.25 s (the other solution of the quadratic equation is negative and thus discarded).

<u>It takes the bolt 0.25 s to pass the last 11% of the fall.</u>

Now, let´s calculate the velocity of the bolt when it reaches the ground:

v = v0 + g · t

v = -41.2 m/s - 9.8 m/s² · 0.25 s

v = -43.6 m/s

<u>The velocity of the bolt just before it reaches the bolt is -43.6 m/s</u>

6 0
3 years ago
What do work and energy have in common
spayn [35]

Energy and Work have the same unit of measurement which is Joules in SI units.

Explanation:

  • A Joule of Work is said to be done on an object when energy is transferred to that particular object.
  • If two objects are involved, when one object transfers energy onto the second, a joule of work is said to be done by the first object.  
  • Work is also the application of force on an object over a distance. So Work = Force × Displacement
  • Energy is neither created nor destroyed. It is in 2 forms - kinetic and potential.
  • Kinetic energy is defined as the energy of a moving object while potential energy is known as the energy that is stored within an object.
  • Kinetic Energy = 1/2 × mass × (velocity)²
  • Potential Energy = mass × acceleration due to gravity × height
  • Both energy and work are measured in Joules.
3 0
3 years ago
Approximately where is it currently high tide on Earth? Group of answer choices wherever it is currently noon anywhere that ocea
Wewaii [24]

Answer:

Option D, only on the portion of the Earth facing directly toward the Moon

Explanation:

Tides are caused by the gravitational pull of moon. The part of earth that faces the moon experiences the highest gravitational force and hence the high tides will occur in this regions only. The regions that do not faces the moon experiences low tides. It is the gravity of moon that attracts the ocean water towards itself.

Hence, Option D is correct

7 0
2 years ago
The sun is going down, and most of the land is dark, but we can still see silhouettes and outlines of objects because some light
miskamm [114]
The Sun is going down, and most of the land is dark, still we can see silhouettes and outlines of objects because some light is still scattered in the atmosphere. I hope this helps you.
7 0
3 years ago
Other questions:
  • The distance between two cities is 144km,it takes me 3hours to travel between these cities.What speed did I travel at?​
    15·1 answer
  • The track of a roller coaster is shown below. At which point will the riders experience centripetal acceleration?
    9·2 answers
  • Who was the first to hypothesize that electron orbit a positively charged nucleus
    7·1 answer
  • What is the unit for current? <br> a. a <br> b. c <br> c. i <br> d. t
    5·1 answer
  • A car is traveling at 19m/s. It slows to a stop at a constant rate over 4.2 seconds. How far did the car travel during the 4.2se
    8·1 answer
  • Four seconds after being launched, what is the height of a ball that starts from a height of 12 m with an initial upward velocit
    13·1 answer
  • 10. What is the acceleration of a 1000 kg car subject to a 500 N net force?
    8·1 answer
  • American space pilots were called astronauts. What were soviet space pilots called?.
    15·1 answer
  • Consider a series of motion scenarios. Each scenario is accompanied by a short description and an arrow indicating the instantan
    15·1 answer
  • Use of a buffered temperature probe is the most accurate way to measure actual vaccine temperatures.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!