1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmainna [20.7K]
3 years ago
13

A 5 N force is applied to a 3 kg ball to change its velocity from 9 m/s to 3 m/s. What is the impulse on the ball ?

Physics
1 answer:
nika2105 [10]3 years ago
3 0
So, first the formula of Impulse is
I = force * time
We have force but no time.
Then, find time.
Next find acceleration,
F = mass * acceleration
5 = 3 * a
1.67 m/s^2
Next find time,
Acceleration = change in velocity / time
Change in velocity is velocity final - velocity initial
1.67 = 3 - 9 / time
Time = 3.6 s (round to 2 s.f.)
Lastly,
Impulse = force * time
Impulse = 5 * 3.6
Impulse is 18 Ns
You might be interested in
O'Malley is riding on a bus which is moving at 10 m/s, and he throws a ball which he observes to be moving at 10 m/s relative to
Vikki [24]

Answer:

<em>20 m/s in the same direction of the bus.</em>

Explanation:

<u>Relative Motion </u>

Objects movement is always related to some reference. If you are moving at a constant speed, all the objects moving with you seem to be at rest from your reference, but they are moving at the same speed as you by an external observer.

If we are riding on a bus at 10 m/s and throw a ball which we see moving at 10 m/s in our same direction, then an external observer (called Ophelia) will see the ball moving at our speed plus the relative speed with respect to us, that is, at 20 m/s in the same direction of the bus.

3 0
3 years ago
A projectile is shot at an angle 45 degrees to the horizontalnear the surface of the earth but in the absence of air resistance.
ivann1987 [24]

Answer:

v₂ = 176.24 m/s

Explanation:

given,

angle of projectile = 45°

speed = v₁ = 150 m/s

for second trail

speed = v₂ = ?

angle of projectile = 37°

maximum height attained formula,

H_{max}= \dfrac{v^2 sin^2(\theta)}{g}

now,

H_{max}= \dfrac{v_1^2 sin^2(\theta_1)}{g}

H_{max}= \dfrac{v_2^2 sin^2(\theta_2)}{g}

now, equating both the equations

\dfrac{v_2^2}{v_1^2}=\dfrac{sin^2(\theta_1)}{sin^2(\theta_2)}

\dfrac{v_2^2}{150^2}=\dfrac{sin^2(45^0)}{sin^2(37^0)}

   v₂² = 31061.79

   v₂ = 176.24 m/s

velocity of projectile would be equal to v₂ = 176.24 m/s

8 0
3 years ago
Question 1 (1 point)
IrinaK [193]
  1.  momentum  
  2. Yes, if the elephant is standing still.
  3. Fullback  
  4. impulse acting on it.  
  5. 2.25 N∙s
  6. A cannon firing.
  7. Inelastic  
  8. it stays the same
  9. When the cue ball contacts the other balls, momentum is transferred causing them to gain momentum and speed.
  10. less than 3 m/s      
<h3><u><em>these are all correct i got an 100%</em></u><em><u> </u></em></h3>
8 0
3 years ago
The speed of molecules is indirectly related to a measurement called _____.
seraphim [82]

The average speed of all the molecules in an object
or sample of a substance is related to its temperature ...
and not indirectly at all.
 
4 0
3 years ago
Read 2 more answers
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
Other questions:
  • Which formula can be used to find the x-component of the resultant vector?
    9·1 answer
  • A thin film of oil with a thickness of 90 nm rests on top of a pool of water. When white light incident on the film is reflected
    14·1 answer
  • A mass spectrometer is being used to monitor air pollutants. it is difficult, however, to separate molecules with nearly equal m
    9·1 answer
  • How much energy is imparted to an electron as it flows through a 6 V battery from the positive to the negative terminal? Express
    14·1 answer
  • The driver of a 1750 kg car traveling on a horizontal road at 110 km/h suddenly applies the brakes. Due to a slippery pavement,
    11·1 answer
  • A student places blocks on a 100cm long see-saw as shown/
    9·1 answer
  • Find initial velocity and time in air​
    5·1 answer
  • a net force of 100 newtons is applied to a wagon for 5 seconds. This causes the wagon to undergo a change in momentum of
    9·1 answer
  • INK]: A car is moving at 200 km/hr east. What is its velocity?
    7·1 answer
  • Under what condition will kinetic friction slow a sliding object?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!