Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
Answer:
Explanation:
Principal quantum no "n" = 3
Azimuthal quantum no "l"= 1
Magnetic quantum no "m"= +1/2
Over all is 3pz
Answer:
a)
b)
Explanation:
a) The reaction:

The free-energy expression:

![E=E_{red}-E_{ox]](https://tex.z-dn.net/?f=E%3DE_%7Bred%7D-E_%7Box%5D)
The element wich is reduced is the Fe and the one that oxidates is the Mg:

The electrons transfered (n) in this reaction are 2, so:


b) If you have values of enthalpy and enthropy you can calculate the free-energy by:

with T in Kelvin


Answer:
Fluorine is the most corrosive element in the periodic table.
Explanation:
Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.