Answer:
The compound you will use is the Dibasic phosphate
Explanation:
Simple phosphate buffer is used ubiquitously in biological experiments, as it can be adapted to a variety of pH levels, including isotonic. This wide range is due to phosphoric acid having 3 dissociation constants, (known in chemistry as a triprotic acid) allowing for formulation of buffers near each of the pH levels of 2.15, 6.86, or 12.32. Phosphate buffer is highly water soluble and has a high buffering capacity,
In this case the most efficient way is to disolve the dibasic compound which in the reaction with the water will form the monobasic phosphate.
To make the buffer you have to prepare the amount of distillate water needed, disolve the dibasic phospate, and then adjust with HCl or NaOH depending on the pH needed.
answer:an arrangement of elements in columns, based on a set of properties that repeat from row to row
Explanation:
hope this helps love <3
Answer: 4.22 grams of solute is there in 278 ml of 0.038 M 
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
Now put all the given values in the formula of molality, we get

mass of
= 
Thus 4.22 grams of solute is there in 278 ml of 0.038 M 
Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
This is an incomplete question, here is a complete question.
Manganese commonly occurs in nature as a mineral. The extraction of manganese from the carbonite mineral rhodochrosite, involves a two-step process. In the first step, manganese (II) carbonate and oxygen react to form manganese (IV) oxide and carbon dioxide:

In the second step, manganese (IV) oxide and aluminum react to form manganese and aluminum oxide:

Write the net chemical equation for the production of manganese from manganese (II) carbonate, oxygen and aluminum. Be sure your equation is balanced.
Answer : The net chemical equation for the production of manganese is:

Explanation :
The given two chemical reactions are:
(1) 
(2) 
First we are multiplying reaction 1 by 3, and reaction 2 by 2, we get:
(1)
(2) 
Now we are adding both the reactions, we get the overall chemical reaction.

The
is common on both side, by cancelling it, we get:
The net chemical equation for the production of manganese is:
