C₆H₁₂O₆, or glucose, is oxidized in the presence of oxygen to form carbon dioxide and water. The reaction equation for this is:
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O
Therefore, if 6 moles of oxygen are consumed, we can see from the equation that one mole of C₆H₁₂O₆ will be consumed.
They can be joined through a Peptide bond
The amino acids serve as the foundation for proteins. Water is produced when the amino acids are linked to form a lengthy chain of acids via amino and carboxyl. The main protein is made up of these long chain amino acids.
When the carboxyl group of one molecule combines with the amino group of the other molecule, a molecule of water is released, and a peptide bond is created between the two molecules (H2O). This condensation event, sometimes referred to as a dehydration synthesis reaction, typically takes place between amino acids.
<h3>What is a Peptide bond ?</h3>
The carboxyl group of one amino acid is joined to the amino group of another to produce a peptide bond, also known as a eupeptide bond. In essence, a peptide link is an amide-type covalent chemical bond.
Learn more about Peptide bond here:
brainly.com/question/11559138
#SPJ4
Answer:
1.645 moles of excess reactant that is of magnesium metal are left over.
Explanation:
Moles of magnesium metal = 3.29 mol
Moles of HCl = 3.29 mol

According to recation, 2 moles of HCl reacts with 1 mol of magnesium metal, then 3.29 moles of HCl will react with :
of magnesium metal
Moles of HCl left = 3.29mol - 3.29 mol = 0
Moles of magnesium metal left = 3.29 mol - 1.645 mol = 1.645 mol
1.645 moles of excess reactant that is of magnesium metal are left over.