Pam is a wedding planner She is setting up a room to seat at least 100 guests. She has some tables that seat 10 people and some
tables that seat 5 people. She only has 10 of the tables that seat 5. Let x = the number of 10-person tables, and y = the number of 5-person tables. Write an inequality to describe the number of tables Pam could set up for the wedding
<span>Pam is a wedding planner She is setting up a room to seat at least 100 guests. She has some tables that seat 10 people and some tables that seat 5 people. She only has 10 of the tables that seat 5.
Let x = the number of 10-person tables, and y = the number of 5-person tables.
She has 10 table that fit 5 people and an unknown number of tables that could fit 10 people.
In the beginning of the passage question, it states that Pam is seating up a room to sea at least 100 guests, so we use t</span><span>he notation a ≥ b </span>means<span> that a is greater than or </span>equal<span> to b .
</span> a ≥ b
10x + 5(10) <span> ≥ 100
</span>10x + 5(10) ≥ 100 is your answer.
Simplfied, 10x + 5(10) ≥ 100 = x ≥ 5
Thus, there are 5+ tables that seat 10 people. This would make sense because if there are 10 tables that fit 5 people, in total those tables would fill 50 peoples, and if there are 5 tables that fit 10 people, in total those tables would fill 50 people. 50+50 is 100. There are <span>at least 100 guests attending, thus this is correct.
The mileage is the independent variable. You can control it. The gasoline remaining DEPENDS ON the number of miles different. That's why it's called the dependent variable. It's change depends on the change in the independent variable