<h2>Question:</h2>
A precipitate is a solid that sometimes forms when two liquids combine.
<h2>Answer:</h2>
<u>A</u><u>.</u><u> </u><u>True</u><u> </u>
<h2>Explanation:</h2>
- <u>Because</u><u> </u><u>the</u><u> </u><u>Precipitate</u><u> </u><u>it's</u><u> </u><u>forms</u><u> </u><u>solid</u><u> </u><u>when</u><u> </u><u>two</u><u> </u><u>liquids</u><u> </u><u>combine</u><u> </u><u>to</u><u> </u><u>precipitate</u><u>.</u><u> </u>
<h2><u>#CARRYONLEARNING</u><u> </u></h2><h2><u>#STUDYWELL</u><u> </u></h2>
Any substance made out of iotas, that has mass and possesses space. Matter ought not be mistaken for mass, as the two are not the same in current material science. Matter is itself a physical substance of which frameworks might be formed, while mass isn't a substance but instead a quantitative property of issue and different substances or frameworks. While there are diverse perspectives on what ought to be viewed as issue, the mass of a substance or framework is the same regardless of any such meaning of issue. Another distinction is that issue has an "inverse" called antimatter, however mass has no inverse—there is no such thing as "hostile to mass" or negative mass. Antimatter has the same (i.e. positive) mass property as its typical issue partner.
Answer:
<u>136.67 g of Na3PO4 i</u>s required to create 100 gram of NaOH.
Explanation:
The balanced equation:

1 mole Na3PO4 = 164 g/mole (Molar mass)
1 mole NaOH = 40 g/mole (Molar mass)
Now,
1 mole of Na3PO4 produce = 3 mole of NaOH
164 g/mol of Na3PO4 produce = 3(40) g/mol of NaOH
or
120 g/mol of NaOH is produced from = 164 g/mol of Na3PO4
1 g/mol of NaOH is produced from =

100 grams of NaOH is produced from =
gram of Na3PO4
calculate,
= 136.67 g