Answer:
pH = 11.216.
Explanation:
Hello there!
In this case, according to the ionization of ammonia in aqueous solution:

We can set up its equilibrium expression in terms of x as the reaction extent equal to the concentration of each product at equilibrium:
![Kb=\frac{[NH_4^+][OH^-]}{[NH_3]} \\\\1.80x10^{-5}=\frac{x*x}{0.150-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D%20%5C%5C%5C%5C1.80x10%5E%7B-5%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.150-x%7D)
However, since Kb<<<1 we can neglect the x on bottom and easily compute it via:

Which is also:
![[OH^-]=1.643x10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.643x10%5E%7B-3%7DM)
Thereafter we can compute the pOH first:

Finally, the pH turns out:

Regards!
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
In a beta emission, the mass number of the daughter nucleus remains unchanged while the atomic number of the daughter nucleus increases by one unit. The following are isotopes produced when the following undergo beta emission;
1) potassium-42 ------> Ca - 42
2) iodine-131 ------------> Xe - 131
3) iron-52 ---------------> Co - 52
4) sodium-24 -----------> Mg -24
The daughter nucleus formed after beta emission is found one place after its parent in the periodic table.
Regarding the stability of the daughter nuclei, a nucleus is unstable if the neutron-proton ratio is less than 1 or greater than 1.5.
Hence, the following daughter nuclei are stable; Ca - 42, Xe - 131, Mg -24.
Learn more: brainly.com/question/1371390
A) Hg, or Mercury, is a liquid at room temperature. Hope this helps!!
i need more information
sorry
good luck thoooo