Answer:
\large \boxed{\textbf{609 kJ}}
Explanation:
The formula for the heat absorbed is
q = mCΔT
Data:
m = 2.07 kg
T₁ = 23 °C
T₂ = 191 °C
C = 1.75 J·°C⁻¹g⁻¹
Calculations:
1. Convert kilograms to grams
2.07 kg = 2070 g
2. Calculate ΔT
ΔT = T₂ - T₁ = 191 - 23 = 168 °C
3. Calculate q

Answer:
Option A.
2Na + 2H2O —> 2NaOH + H2
Explanation:
To know which option is correct, we shall do a head count of the number of atoms present on both side to see which of them is balanced. This is illustrated below below:
For Option A:
2Na + 2H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
4 H >>>>>>>>>>>> 4 H
2 O >>>>>>>>>>>> 2 O
Thus, the above equation is balanced.
For Option B:
2Na + 2H2O —> NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 3 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
For Option C:
2Na + H2O —> 2NaOH + H2
Reactant >>>>>>> Product
2 Na >>>>>>>>>>> 2 Na
2 H >>>>>>>>>>>> 4 H
1 O >>>>>>>>>>>> 2 O
Thus, the above equation is not balanced.
For Option D:
Na + 2H2O —> NaOH + 2H2
Reactant >>>>>>> Product
1 Na >>>>>>>>>>> 1 Na
4 H >>>>>>>>>>>> 5 H
2 O >>>>>>>>>>>> 1 O
Thus, the above equation is not balanced.
From the illustrations made above, only option A is balanced.
Depending on the reaction, we could monitor the progress towards equilibrium by observing the concentration of the reactant and the product are equal with time.
<h3>What is equilibrium?</h3>
Equilibrium is a stage of reaction in which the rate of forwarding reaction is equal to the rate of backward reaction and equilibrium is stable at the reversible state of mode.
The concentration of reactant and product must also be equal or the same as the time then only it can be an equilibrium reaction.
Therefore equilibrium depends on the reaction, the concentration of the reactant and the product are equal with time.
Learn more about equilibrium, here:
brainly.com/question/13463225
#SPJ4
Answer:
posotive
Explanation:
electrons give off negative pulse so take one away