The physical state that best describes the scientist's sample is solid (option C).
<h3>What are the states of matter?</h3>
Matter refers to any substance that has mass and occupies space. The states of matter are as follows;
- Solids; a substance in the fundamental state of matter that retains its size and shape without need of a container.
- Gases; a matter in a state intermediate between liquid and plasma that can be contained only if it is fully surrounded by a solid
- Liquids; substance that is flowing such as water; Liquids readily change their relative position, and which therefore retains no definite shape, except that determined by the containing receptacle.
According to this question, a scientist observed a sample of an unknown material to have molecules that are packed closely together and have fixed positions in space relative to each other. It has resistance to deformation and change of volume.
This description best fits the solid state of matter.
Learn more about solids at: brainly.com/question/14237862
#SPJ1
Answer:
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Explanation:
The equilibrium constant will remain the same irrespective of the amount of reactant taken.
Let us calculate the equilibrium constant of the reaction.
Kc=![\frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BPCl_%7B3%7D%5D%5BCl_%7B2%7D%5D%7D%7B%5BPCl_%7B5%7D%5D%7D)
Let us calculate the moles of each present at equilibrium

molar mass of PCl₅=208
molar mass of PCl₃=137
molar mass of Cl₂=71
moles of PCl₅ = 
moles of PCl₃= 
moles of Cl₂ = 
the volume is 5 L
So concentration will be moles per unit volume
Putting values
Kc = 
Now if the same moles are being transferred in another beaker of volume 2L then there will change in the concentration of each as follow

Initial 0.02 0.06 0.04
Change -x +x +x
Equilibrium 0.02-x 0.06+x 0.04+x
Conc. (0.02-x)/2 (0.06+x)/2 (0.04+x)/2
Putting values
0.024 = 
Solving



x = -0.01
so the new moles of
PCl₅ = 0.02 + 0.01 =0.03
PCl₃ = 0.06-0.01 = 0.05
Cl₂ = 0.04-0.01 = 0.03
mass of each will be:
mass= moles X molar mass
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Since it is stated that it is an ideal gas, we use the ideal gas equation to solve the volume of this gas sample. The ideal gas equation is expressed as:
PV = nRT
V = nRT / P
V = 0.200 (8.314) (400) / 200x10^3
V = 3.33 x 10^-3 m³ or 3.33L
Therefore, the correct answer is option B.
Can you add more context to your question i’m confused