D, It is a flow of protons, is the best answer. Electricity is the flow of electrons, not protons.
Answer:
1.Very good electrical conductivity :<u> Metals</u> (Decreacing order of conductivity)
- <em>Silver > Copper > Gold > aluminium</em>
2. Amphoteric <u>: Metal elements</u>
- <em>Beryllium , Aluminium , Zinc </em>,
3.Gaseous at room temperature: mostly <u>Nobel gases elements</u> and some non - metal elements.
- <em>Helium ,neon , argon , krypton , fluorine , Oxygen , nitrogen</em>
4.Solid at room temperature:<u> Mostly Metals</u> (few non-metals, metalloid elements)
- <em>Metals (Sodium , potassium , calcium , gold are solid)</em>
<em>Non- metals(Carbon ,Boron )</em>
<em>Metalloids(antimony)</em>
<em>5.</em> Brittle <em>: </em><u>non - metals </u>(can't be rolled into wires)
<em>Hydrogen , carbon , sulfur , phosphorus</em><u> </u>
Explanation:
Answer:
did you get the answer???
Explanation:
I really need help
Answer:
26.0 g/mol is the molar mass of the gas
Explanation:
We have to combine density data with the Ideal Gases Law equation to solve this:
P . V = n . R .T
Let's convert the pressure mmHg to atm by a rule of three:
760 mmHg ____ 1 atm
752 mmHg ____ (752 . 1)/760 = 0.989 atm
In density we know that 1 L, occupies 1.053 grams of gas, but we don't know the moles.
Moles = Mass / molar mass.
We can replace density data as this in the equation:
0.989 atm . 1L = (1.053 g / x ) . 0.082 L.atm/mol.K . 298K
(0.989 atm . 1L) / (0.082 L.atm/mol.K . 298K) = 1.053 g / x
0.0405 mol = 1.053 g / x
x = 1.053 g / 0.0405 mol = 26 g/mol
Given:
P = 123 kPa
V = 10.0 L
n = 0.500 moles
T = ?
Assume that the gas ideally, thus, we can use the ideal gas equation:
PV = nRT
where R = 0.0821 L atm/mol K
123 kPa * 1 atm/101.325 kPa * 10.0 L = 0.500 moles * 0.0821 Latm/molK * T
solve for T
T = 295.72 K<span />