Answer:
that's because....
group 1 (e.g Na, K) those tend to lose one electron to gain noble gas electron configuration.
they can achieve that by just losing one electron from their outer shell.
as you go down the group 1, element gets bigger in size, which means there is more space between nucleus (which is in center of atom) and electron of outer shell. the more far away they are the less attraction force between them.
so its easier for potassuim to lose one electron than for lithuim.
so that means potassium will easily give up 1 electron to react with non metal or other element therefore it is more reactive than lithuim
but in case of non metal, the opposite happens but simple to understand.
as you go down the group 7 (halogen- Cl, Br, I) element will get bigger therefore force between nucleus and outer electron is getting smaller. they have to gain 1 electron in order to fill the outer shell (to gain noble gas electron configuration.)
as florine is more smaller in size than clorine it is more reactive because florine has more tendency to pull extra electron from metal or other element towards its side. so it easily gain 1 electron to react.
Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.
Answer:
25.30 gram
Explanation:
No of moles = given mass / molar mass
No of moles = 63.17/80.06
0.7890 moles
Mass of sulphar = no of moles× molar mass of sulphar
Mass of sulphur = 0.7890×32.065
25.30 gram