Answer:
atoms
Explanation:
for sugar to dissolve in water hydaration must be equal to or greater than the lattice energy or molecular forces so when the molecular forces breaks new atoms are formed for recombination in new compound
Answer:
A) 8.00 mol NH₃
B) 137 g NH₃
C) 2.30 g H₂
D) 1.53 x 10²⁰ molecules NH₃
Explanation:
Let us consider the balanced equation:
N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)
Part A
3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

Part B:
1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

Part C:
According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

Part D:
6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:

Explanation:
please mark me as brainlest
Answer:
Explanation:
The mass of an atom is dependent on its number of protons and neutrons. Electrons have mass, but are too light in comparison to protons and neutrons to contribute towards the overall mass. Their relative mass is about 1/1840 compared to 1 for protons and neutrons, and therefore are not counted in the mass.
Hope this helped!
Answer:
3,5-dimethyl-2-octene
Explanation:
When naming an organic molecule with a double bond, the chain has to include the double bond. This means that there are 8 carbon atoms on the central chain. The molecule is octene. The double bond is after the second carbon, making it 2-octene. You can't say that its 6-octene because you want to have the smallest number possible in front.
The molecules attached are two methyl groups. Since you have two methyl groups, the name will be dimethyl. Start counting from the side closest to the double bond. This gives you a 3, 5-dimethyl group.