This is a right angle triangle.
So, by Pythagoras theorem,
√(32^2+20^2) = x
or √(1024+400) = x
or √1424 = x
or <em>37.74 = x</em>
Answer:
-9xy+16x
Step-by-step explanation:
x(y-2) +3x(6-y) -7xy
Distribute
xy -2x +18x-3xy -7xy
Combine like terms
-9xy+16x
Answer:
- <u><em>A dilation by a scale factor of 4 and then a reflection across the x-axis </em></u>
Explanation:
<u>1. Vertices of triangle FGH:</u>
- F: (-2,1)
- G: (-3,3)
- H: (0,1)
<u>2. Vertices of triangle F'G'H':</u>
- F': (-8,-4)
- G': (-12,-12)
- H': (0, -4)
<u>3. Solution:</u>
Look at the coordinates of the point H and H': to transform (0,1) to (0,-4) you can muliply each coordinate by 4 and then change the y-coordinate from 4 to -4. That is<em> a dilation by a scale factor of 4 and a reflection across the x-axis.</em> This is the proof:
- Rule for a dilation by a scale factor of 4: (x,y) → 4(x,y)
(0,1) → 4(0,1) = (0,4)
- Rule for a reflection across the x-axis:{ (x,y) → (x, -y)
(0,4) → (0,-4)
Verfiy the transformations of the other vertices with the same rule:
- Dilation by a scale factor of 4: multiply each coordinate by 4
4(-2,1) → (-8,4)
4(-3,3) → (-12,12)
- Relfection across the x-axis: keep the x-coordinate and negate the y-coordinate
(-8,4) → (-8,-4) ⇒ F'
(-12,12) → (-12,-12) ⇒ G'
Therefore, the three points follow the rules for <em>a dilation by a scale factor of 4 and then a reflection across the x-axis.</em>
This is rationalising the denominator of an imaginary fraction. We want to remove all i's from the denominator.
To do this, we multiply the fraction by 1. However 1 can be expressed in an infinite number of ways. For example, 1 = 2/2 = 3/3 = 4n^2 / 4n^2 (assuming n is not zero!). Let's express 1 as the complex conjugate of the denominator, divided by the complex conjugate of the denominator.
The complex conjugate of (3 - 2i) is (3 + 2i). Then do what I just said:
4/(3-2i) * (3+2i)/(3+2i) = 4(3+2i)/(3-2i)(3+2i) = (12+8i)/(9-4i^2) = (12+8i)/(9+4) = (12+8i)/13
This is the answer you are looking for. I hope this helps :)