If you meant 3456789+(pi/2) or also known as 3456789 plus half of pi,
Then the answer is 3456790.571
The given function s/(s^2 +3s -4) is proved with the help of inverse Laplace theorem.
According to the statement
we have to find the inverse of the Laplace theorem with the help pf the given theorem in the statement.
So, For this purpose, we know that the
Laplace transformation is a transformation of a function f(x) into the function g(t) that is useful especially in reducing the solution of an ordinary linear differential equation with constant coefficients to the solution of a polynomial equation.
Now, We assume you want to find the inverse transform of 
This can be written in partial fraction form as

which can be found in a table of transforms to be the transform of

There are a number of ways to determine the partial fractions. They all start with factoring the denominator.

After that, you can postulate the final form and determine the values of the coefficients that make it so.
For example:

This gives rise to two equations:
(A+B) = 1
(4B-A) = 0.
So, The given function s/(s^2 +3s -4) is proved with the help of inverse Laplace theorem.
Disclaimer: This question was incomplete. Please find the full content below.
Question:
Use appropriate algebra and theorem 7.2.1 to find the given inverse laplace transform. (write your answer as a function of t.) ℒ−1 s s2 + 3s − 4.
Learn more about Laplace here
brainly.com/question/11630973
#SPJ4
The average rate of change (AROC) of a function f(x) on an interval [a, b] is equal to the slope of the secant line to the graph of f(x) that passes through (a, f(a)) and (b, f(b)), a.k.a. the difference quotient given by
![f_{\mathrm{AROC}[a,b]} = \dfrac{f(b)-f(a)}{b-a}](https://tex.z-dn.net/?f=f_%7B%5Cmathrm%7BAROC%7D%5Ba%2Cb%5D%7D%20%3D%20%5Cdfrac%7Bf%28b%29-f%28a%29%7D%7Bb-a%7D)
So for f(x) = x² on [1, 5], the AROC of f is
![f_{\mathrm{AROC}[1,5]} = \dfrac{5^2-1^2}{5-1} = \dfrac{24}4 = \boxed{6}](https://tex.z-dn.net/?f=f_%7B%5Cmathrm%7BAROC%7D%5B1%2C5%5D%7D%20%3D%20%5Cdfrac%7B5%5E2-1%5E2%7D%7B5-1%7D%20%3D%20%5Cdfrac%7B24%7D4%20%3D%20%5Cboxed%7B6%7D)
<span><span>Graph <span>x2<span> = 4</span>y</span><span> and state the vertex, focus, axis of symmetry, and directrix.</span></span><span>This is the same graphing that I've done in the past: </span><span>y = (1/4)x2</span><span>. So I'll do the graph as usual:</span></span><span> </span><span>The vertex is obviously at the origin, but I need to "show" this "algebraically" by rearranging the given equation into the conics form:<span>x2 = 4y</span> Copyright © Elizabeth Stapel 2010-2011 All Rights Reserved<span>
(x – 0)2 = 4(y – 0)</span><span>This rearrangement "shows" that the vertex is at </span><span>(h, k) = (0, 0)</span><span>. The axis of symmetry is the vertical line right through the vertex: </span><span>x = 0</span>. (I can always check my graph, if I'm not sure about this.) The focus is "p" units from the vertex. Since the focus is "inside" the parabola and since this is a "right side up" graph, the focus has to be above the vertex.<span>From the conics form of the equation, shown above, I look at what's multiplied on the unsquaredpart and see that </span><span>4p = 4</span><span>, so </span><span>p = 1</span><span>. Then the focus is one unit above the vertex, at </span>(0, 1)<span>, and the directrix is the horizontal line </span><span>y = –1</span>, one unit below the vertex.<span>vertex: </span>(0, 0)<span>; focus: </span>(0, 1)<span>; axis of symmetry: </span><span>x<span> = 0</span></span><span>; directrix: </span><span>y<span> = –1</span></span></span><span><span><span>Graph </span><span>y2<span> + 10</span>y<span> + </span>x<span> + 25 = 0</span></span>, and state the vertex, focus, axis of symmetry, and directrix.</span><span>Since the </span>y<span> is squared in this equation, rather than the </span>x<span>, then this is a "sideways" parabola. To graph, I'll do my T-chart backwards, picking </span>y<span>-values first and then finding the corresponding </span>x<span>-values for </span><span>x = –y2 – 10y – 25</span>:<span>To convert the equation into conics form and find the exact vertex, etc, I'll need to convert the equation to perfect-square form. In this case, the squared side is already a perfect square, so:</span><span>y2 + 10y + 25 = –x</span> <span>
(y + 5)2 = –1(x – 0)</span><span>This tells me that </span><span>4p = –1</span><span>, so </span><span>p = –1/4</span><span>. Since the parabola opens to the left, then the focus is </span>1/4<span> units to the left of the vertex. I can see from the equation above that the vertex is at </span><span>(h, k) = (0, –5)</span><span>, so then the focus must be at </span>(–1/4, –5)<span>. The parabola is sideways, so the axis of symmetry is, too. The directrix, being perpendicular to the axis of symmetry, is then vertical, and is </span>1/4<span> units to the right of the vertex. Putting this all together, I get:</span><span>vertex: </span>(0, –5)<span>; focus: </span>(–1/4, –5)<span>; axis of symmetry: </span><span>y<span> = –5</span></span><span>; directrix: </span><span>x<span> = 1/4</span></span></span><span><span>Find the vertex and focus of </span><span>y2<span> + 6</span>y<span> + 12</span>x<span> – 15 = 0</span></span></span><span><span>The </span>y<span> part is squared, so this is a sideways parabola. I'll get the </span>y stuff by itself on one side of the equation, and then complete the square to convert this to conics form.<span>y2 + 6y – 15 = –12x</span> <span><span>
y</span>2 + 6y + 9 – 15 = –12x + 9</span> <span>
(y + 3)2 – 15 = –12x + 9</span> <span>
(y + 3)2 = –12x + 9 + 15 = –12x + 24</span> <span>
(y + 3)2 = –12(x – 2)</span> <span>
(y – (–3))2 = 4(–3)(x – 2)</span></span><span><span>Then the vertex is at </span><span>(h, k) = (2, –3)</span><span> and the value of </span>p<span> is </span>–3<span>. Since </span>y<span> is squared and </span>p<span> is negative, then this is a sideways parabola that opens to the left. This puts the focus </span>3 units to the left of the vertex.<span>vertex: </span>(2, –3)<span>; focus: </span><span>(–1, –3)</span></span>