Answer:
Mass = 36 g
Explanation:
Given data:
Mass of water formed = ?
Mass of hydrogen = 4.04 g
Mass of oxygen = 31.98 g
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 4.04 g/ 2 g/mol
Number of moles = 2.02 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 31.98 g/ 32 g/mol
Number of moles = 1.0 mol
Now we will compare the moles of water with hydrogen and oxygen.
O₂ : H₂O
1 : 2
H₂ : H₂O
2 : 2
2.02 : 2.02
Number of moles of water formed by oxygen are less thus oxygen will limiting reactant.
Mass of water:
Mass = number of moles × molar mass
Mass = 2 mol × 18 g/mol
Mass = 36 g
The image represents A COMPOUND because the molecules are BONDED CHEMICALLY.
A compound is a substance formed when two or more elements combine together chemically. In the process of chemical combination, the chemical bonds that were present in the participating elements will be broken and new chemical bonds will be formed in the product.
Answer:
The higher the temperature, the faster the particles move, the lower the temperature, the slower.
Answer:
Kc = [CO2], that is to say it is equal to the concentration of CO2
Explanation:
It is a heterogeneous equilibrium since the substances that participate in the reaction are in different phases
In the heterogeneous limestone decomposition reaction:
CaCO3(s) --> CaO(s) + CO2(g)
The equilibrium constants are:
Kc = [CO2(g)]; Kp = PCO2(g); Kc = Kp (R T)^
−(1−0) = Kp (R T)^
−1
The equilibrium situation is not affected by the amount of solid or liquid, as long as these substances are present.
The equilibrium constant is independent of the amounts of solids and liquids in equilibrium.
Answer:
0.0075 milliliters (7.5 microliters) will be taken from the stock solution and then diluted with 0.0249925 milliliters (24.9925 microliters) of water to make 0.025 milliliters (25 microliters) of NaOH solution.
Explanation:
This is a problem of dilution using the equation:
<em>initial concentration x initial volume = final concentration x final volume.</em>
The final volume to be prepared is 25 microliters.
The final concentration to be prepared is 3 M.
The initial volume to be taken is not known yet.
The initial concentration is 10 M.
Now, let's substitute these parameters into the the equation above.
10 x initial volume = 3 x 25
Initial volume = 3 x 25/10
= 7.5 microliters
Note that: 1 microliter = 0.001 milliliters
Hence,
7.5 microliters = 0.0075 milliliters
<u>This means that an initial volume of 0.0075 milliliters (7.5 microliters) will be taken from the stock solution. This amount will then be diluted with 0.0249925 milliliters (24.9925 microliters) of water to make 0.025 milliliters (25 microliters) of NaOH solution.</u>