For the purpose we will here use t<span>he ideal gas law:
p</span>×V=n×R×<span>T
V= </span><span>5.0 L
T= </span><span>373K
p= </span><span>203kPa
</span><span>
R is </span> universal gas constant, and its value is 8.314 J/mol×<span>K
</span>
Now when we have all necessary date we can calculate the number of moles:
n=p×V/R×T
n= 203 x 5 / 8.314 x 373 = 0.33 mole
Answer:
The empirical formula is =
Explanation:
Given that:- Mass of nickel = 2.241 g
Mass of the oxide formed = 2.852 g
Mass of the oxygen reacted = Mass of the oxide formed - Mass of nickel = 2.852 g - 2.241 g = 0.611 g
Molar mass of nickel = 58.6934 g/mol
Moles of nickel =
= 0.03818 mol
Molar mass of oxygen = 15.999 g/mol
Moles of nickel =
= 0.03818 mol
Taking the simplest ratio for Ni and O as:
0.03818 : 0.03818 = 1 : 1
<u>The empirical formula is =
</u>
Answer:
A model or simulation is only as good as the rules used to create it. It is very difficult to create an entirely realistic model or simulation because the rules are based on research and past events. The main disadvantage of simulations is that they aren't the real thing.
Explanation:
Answer:
Elemental gold to have a Face-centered cubic structure.
Explanation:
From the information given:
Radius of gold = 144 pm
Its density = 19.32 g/cm³
Assuming the structure is a face-centered cubic structure, we can determine the density of the crystal by using the following:


a = 407 pm
In a unit cell, Volume (V) = a³
V = (407 pm)³
V = 6.74 × 10⁷ pm³
V = 6.74 × 10⁻²³ cm³
Recall that:
Net no. of an atom in an FCC unit cell = 4
Thus;


density d = 19.41 g/cm³
Similarly; For a body-centered cubic structure

where;
r = 144


a = 332.56 pm
In a unit cell, Volume V = a³
V = (332.56 pm)³
V = 3.68 × 10⁷ pm³
V 3.68 × 10⁻²³ cm³
Recall that:
Net no. of atoms in BCC cell = 2
∴


density =17.78 g/cm³
From the two calculate densities, we will realize that the density in the face-centered cubic structure is closer to the given density.
This makes the elemental gold to have a Face-centered cubic structure.