Answer:
Explanation:
<em>Heat</em> is a kind of energy.
The <em>kinetic theory </em>relates the heat with the movement of the particles: the more the particles move, the larger the kinetic energy of the system. The kinetic theory states that heat is the kinetic energy of the particles, atoms or molecules, in a substance, that is transferred from a substance at higher temperature to other substance at lower temperature.
Based on that principle, the kinetic theory explains the changes of phases of the substances in terms of the motion of the particles: the hotter an object the faster the particles move, the more energetic the particles are, and they occupy more space. Thus, when a solid is heated, the particles move faster and it can pass to liquid or gaseous state.
The answer for the following problem is mentioned below.
- <u><em>Therefore the final temperature of the gas is 740 K</em></u>
Explanation:
Given:
Initial pressure of the gas (
) = 1.8 atm
Final pressure of the gas (
) = 4 atm
Initial temperature of the gas (
) = 60°C = 60 + 273 = 333 K
To solve:
Final temperature of the gas (
)
We know;
From the ideal gas equation;
we know;
P × V = n × R × T
So;
we can tell from the above equation;
<u> P ∝ T</u>
(i.e.)
<em> </em>
<em> = constant</em>
= 
Where;
= initial pressure of a gas
= final pressure of a gas
= initial temperature of a gas
= final temperature of a gas
= 
=
= 740 K
<u><em>Therefore the final temperature of the gas is 740 K</em></u>
<u>Answer</u>
So this is the reaction that happens.
<span>C4H10 + O2 = CO2 + H2O </span>
<span>Balanced, it is </span>
<span>2C4H10 + 8O2 = 8CO2 + 10H2O </span>
<span>Given 1 kg or 1000 g of butane, use stoichiometry aka factor labeling aka conversions and mole ratios to get to grams of oxygen. </span>
<span>I'll do an example. Let's form water. Hydrogen is diatomic too. </span>
<span>2H2 + O2 = 2H2O </span>
<span>Given 1000 g of Hydrogen, I need to know how many grams of oxygen to use. To convert grams to moles,
I know that 1 mol of H2 equals 2.02 g. Then, for every mole of O2, there are 2 moles of H2. Then converting moles of O2 to grams, I know that one mole of it equals 32 grams. </span>
<span>[1000 g H2] x [1 mol H2/2.02 g H2] x [1 mol O2/2 mol H2] x [32 g O2/1 mol O2] </span>
<span>My answer would be 7.9 kg </span>