Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.
Answer:
The moment of a given force about a given axis of rotation can be decreased by decreasing the perpendicular distance of force from the axis of rotation.
OD because Boyle’s law specifically states
The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is
.
The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.
The given data:
time, t = 1.1 s
initial speed, u = 1000 km/h = 
final speed, v = 0 m/s
So we will be using the equation of motion, that is,
v = u + at



Hence , the deceleration of the rocket is
.
To learn more about Attention here:
brainly.com/question/28500124
#SPJ4
Answer:
This would happen.
Explanation:
If the earth’s rotation speed increases then the weight of the body decreases. This is because you see a moving body on the rotating earth’s surface itself is in the reference frame. So when the earth rotates, the centripetal force acts towards the centre of rotation.