Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
Answer:
Option (B)
Explanation:
A lift chart usually refers to a graphical representation that is mainly used in order to improve the drawbacks of a mining model by making a comparison with any random guess, and also helps in determining the changes that occur in terms of lift scores.
It describes the binary classification of the problems associated with the mining activity. This type of chart is commonly used to differentiate the lift scores for a variety of models, and picking the best one out of all.
Thus, the correct answer is option (B).
Yes, parallax affects the precision of a measurement that you make. It introduces an error in the order of the parallax. It will cause the measurement to be different from the real answer. Hope this answers the question. Have a nice day.
Heat required to melt 0.05 kg of aluminum is 28.7 kJ.
<h3>What is the energy required to melt 0.05 kg of aluminum?</h3>
The heat energy required to melt 0.05 kg of aluminum is obtained from the heat capacity of aluminum and the melting point of aluminum.
The formula to be used is given below:
- Heat required = mass * heat capacity * temperature change
Assuming the aluminum sheet was at room temperature initially.;
Room temperature = 25 °C
Melting point of aluminum = 660.3 °C
Temperature difference = (660.3 - 25) = 635.3 903
Heat capacity of aluminum = 903 J/kg/903
Heat required = 0.05 * 903 * 635.3
Heat required = 28.7 kJ
In conclusion, the heat required is obtained from the heat change aluminum and the mass of the aluminum melted.
Learn more about heat capacity at: brainly.com/question/21406849
#SPJ1
Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:
