We Know, W = F * s
here, F = 25 N
s = 3 m
Substitute it into the expression,
W = 25 * 3
W = 75 Joule
So, your final answer is 75 J
Hope this helps!
It is in its ground state when its orbital electron is at its lowest energy amount.
If the bag is motionless, then it's not accelerating up or down.
That fact right there tells you that the net vertical force on it
is zero. So the sum of any upward forces on it is exactly equal
to the downward gravitational force ... the bag's "weight".
If the bag is suspended from a single rope, then the tension
in the rope must be equal to the 100-N weight of the bag.
And if there are four ropes holding it up, then the sum of
the four tensions is 100N. If the ropes have been carefully
adjusted to share the load equally, then the tension is 25N
in each rope.
Answer:
The mini Cooper will experience the greater force
Explanation:
Generally, a bulldozer has a greater mass compared to a Mini Cooper hence when both of these vehicles interact in an head on collision the Mini Cooper will experience a greater force because the bulldozer has a greater momentum