B) Applied and gravitational forces
Answer:
9375 N
Explanation:
From the question,
Centripetal force (F) = mv²/r.................. Equation 1
Where m = mass of the car, v = velocity of the car, r = radius of the curve.
Given: m = 900 kg, r = 600 m, v = 25 m/s
Substitute these values into equation 1
F = (900×25²)/600
F = 9375 N.
Hence the centripetal force on the car is 9375 N
The De Broglie wavelength of the electron is

And we can use De Broglie's relationship to find its momentum:

Given

, with m being the electron mass and v its velocity, we can find the electron's velocity:

This velocity is quite small compared to the speed of light, so the electron is non-relativistic and we can find its kinetic energy by using the non-relativistic formula:
Answer:
- 1.07 ft
Explanation:
V1 = (-5, 7, 2)
V2 = (3, 1, 2)
Projection of v1 along v2, we use the following formula
=\frac{\overrightarrow{V1}.\overrightarrow{V2}}{V2}
So, the dot product of V1 and V2 is = - 5 (3) + 7 (1) + 2 (2) = -15 + 7 + 4 = -4
The magnitude of vector V2 is given by
= 
So, the projection of V1 along V2 = - 4 / 3.74 = - 1.07 ft
Thus, the projection of V1 along V2 is - 1.07 ft.
so we need to find the direction of v2
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be
